Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 29(63): e202301837, 2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-37640690

RESUMEN

Covalent organic frameworks (COFs), as a new class of crystalline, well-ordered, and porous materials with intermittent constructions, are formed via organic structural parts connected through covalent bonds. These materials have been employed in several fields comprising pollutant adsorption and separation, catalysis, electrical conductivity, gas storage, etc. The preparation of COFs is mainly applied in tubes with high temperatures and degassing treatment. Furthermore, the reaction medium is involved in toxic organic solvents like toluene, dioxane, mesitylene, acetonitrile, and so on. Hence, discovering clean medium and green approaches has attracted wide attention. Recently, facile, less dangerous, and greener methods have been developed for COFs synthesis in diverse applications like performing the reaction at ambient temperature or employing aqueous solvents, ionic liquids, and a mixture of organic solvents/water. This review article summarizes the eco-friendly production approaches of COFs for diverse applications.

2.
Curr Opin Colloid Interface Sci ; 55: 101480, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34149297

RESUMEN

The global epidemic owing to COVID-19 has generated awareness to ensuring best practices for avoiding the microorganism spread. Indeed, because of the increase in infections caused by bacteria and viruses such as SARS-CoV-2, the global demand for antimicrobial materials is growing. New technologies by using polymeric systems are of great interest. Virus transmission by contaminated surfaces leads to the spread of infectious diseases, so antimicrobial coatings are significant in this regard. Moreover, antimicrobial food packaging is beneficial to prevent the spread of microorganisms during food processing and transportation. Furthermore, antimicrobial textiles show an effective role. We aim to provide a review of prepared antimicrobial polymeric materials for use in coating, food packaging, and textile during the COVID-19 pandemic and after pandemic.

3.
Chem Commun (Camb) ; 60(21): 2865-2886, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38372347

RESUMEN

Organic solvent nanofiltration (OSN) has evolved as a vital technological frontier with paramount significance in the separation and purification of organic solvents. Its implication is particularly prominent in industries such as pharmaceuticals, petrochemicals, and environmental remediation. This comprehensive review, meticulously navigates through the current state of research in OSN membranes, unveiling both the critical challenges and promising opportunities that beckon further exploration. The central focus of this review is on the unique utilization of covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) in OSN membrane design, leveraging their distinctive structural attributes-tunable porosity, robust chemical stability, and molecular sieving capabilities. These qualities position them as exceptional candidates for crafting membranes tailored to the intricacies of organic solvent environments. Our investigation extends into the fundamental principles that render COFs and MOFs adept in OSN applications, dissecting their varied fabrication methods while offering insights into the advantages and limitations of each. Moreover, we address environmental and sustainability considerations in the use of COF and MOF-based OSN membranes. Furthermore, we meticulously present the latest advancements and innovations in this burgeoning field, charting a course toward potential future directions and emerging research areas. By underscoring the challenges awaiting exploration, this review not only provides a panoramic view of the current OSN landscape but also lays the groundwork for the evolution of efficient and sustainable OSN technologies, specifically harnessing the unique attributes of COFs and MOFs.

4.
Carbohydr Polym ; 301(Pt B): 120362, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446499

RESUMEN

In this study, a novel effective bio adsorbent was produced and employed to remove congo red and methylene blue dyes from water matrices. First, Zn-Al layered double hydroxide (Zn-Al LDH) was manufactured in a hydrothermal process. Next, through in-situ nucleation and growing of crystalline NH2-modified Ti metal-organic framework (NH2-MIL-125(Ti) on Zn-Al sheets by solvothermal method, Zn-Al LDH@NH2-MIL-125(Ti) hybrid was produced. The prepared hybrid showed good adsorption capacity (qmax values: 294 mg/g and 158 mg/g) for congo red and methylene blue dyes in optimum condition (adsorbent amount = 5-7 mg, dye concentration = 100-150 mg/L, V = 10 mL, pH = no adjustment, and contact time = 2-5 h). Based on the isotherm and kinetic models, the Langmuir isotherm, as well as the pseudo-second-order model, were fit to the equilibrium data. In the next attempt, to improve the reusability of the powder and particle form of Zn-Al LDH@NH2-MIL-125(Ti) hybrid, as well as prevent of formation of secondary contamination in water, Na-alginate, as a cheap and effective substrate, was used. Novel architectures of robust, reusable, and efficient Ca-alginate/Zn-Al LDH@NH2-MIL-125(Ti) microgel beads were prepared and the performances of the microbeads were compared with pure LDH@NH2-MIL-125(Ti) hybrid.


Asunto(s)
Estructuras Metalorgánicas , Colorantes , Alginatos , Rojo Congo , Azul de Metileno , Aniones , Cationes , Agua , Zinc
5.
Adv Colloid Interface Sci ; 303: 102653, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35349924

RESUMEN

COVID-19 is caused via the SARS-CoV-2 virus, a lipid-based enveloped virus with spike-like projections. At present, the global epidemic of COVID-19 continues and waves of SARS-CoV-2, the mutant Delta and Omicron variant which are associated with enhanced transmissibility and evasion to vaccine-induced immunity have increased hospitalization and mortality, the biggest challenge we face is whether we will be able to overcome this virus? On the other side, warm seasons and heat have increased the need for proper ventilation systems to trap contaminants containing the virus. Besides, heat and sweating accelerate the growth of microorganisms. For example, medical staff that is in the front line use masks for a long time, and their facial sweat causes microbes to grow on the mask. Nowadays, efficient air filters with anti-viral and antimicrobial properties have received a lot of attention, and are used to make ventilation systems or medical masks. A wide range of materials plays an important role in the production of efficient air filters. For example, metals, metal oxides, or antimicrobial metal species that have anti-viral and antimicrobial properties, including Ag, ZnO, TiO2, CuO, and Cu played a role in this regard. Carbon nanomaterials such as carbon nanotubes, graphene, or derivatives have also shown their role well. In addition, natural materials such as biopolymers such as alginate, and herbal extracts are employed to prepare effective air filters. In this review, we summarized the utilization of diverse materials in the preparation of efficient air filters to apply in the preparation of medical masks and ventilation systems. In the first part, the employing metal and metal oxides is examined, and the second part summarizes the application of carbon materials for the fabrication of air filters. After examination of the performance of natural materials, challenges and progress visions are discussed.


Asunto(s)
Filtros de Aire , Antiinfecciosos , COVID-19 , Nanotubos de Carbono , Aerosoles , COVID-19/prevención & control , Humanos , Máscaras , Óxidos , SARS-CoV-2
6.
Int J Biol Macromol ; 182: 1931-1940, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34048834

RESUMEN

Pathogen transmission is a widespread threat to global human health. Vaccines are very important during the outbreak of a pandemic. Destructive fractures caused by a sudden outbreak of COVID-19 have spurred vaccine production at an unprecedented rate. The strategy of an effective vaccine delivery system is opening up novel probabilities to make more immunization. Indeed, vaccination is the most successful way to prevent deaths from infectious diseases. In order to optimal immune response production or improvement in the effectiveness of vaccines, delivery systems or adjuvants are required. Natural polymers such as chitosan, alginate, hyaluronic acid, gums, and ß-glucan with antiviral activity have good potential as adjuvant or delivery systems for vaccine formulation development and design vaccine delivery devices. According to the antiviral performance and immunomodulation of these biopolymers, they will play significant characters in the anti-COVID-19 field. In this mini-review, the recent progress in vaccine development by using biopolymers is presented which, provides a reference for their research on anti-COVID-19 drugs and vaccines.


Asunto(s)
Adyuvantes Inmunológicos/uso terapéutico , Alginatos/uso terapéutico , Vacunas contra la COVID-19/uso terapéutico , COVID-19 , Quitosano/uso terapéutico , Sistemas de Liberación de Medicamentos , Ácido Hialurónico/uso terapéutico , Gomas de Plantas/uso terapéutico , SARS-CoV-2/inmunología , beta-Glucanos/uso terapéutico , Animales , COVID-19/inmunología , COVID-19/prevención & control , Humanos
7.
Int J Biol Macromol ; 193(Pt A): 183-204, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34695491

RESUMEN

Drug delivery systems are explained as methods to deliver a specific drug to desired organs, tissues, and cells for drug release to diseases treatment. Recently, considerable development has been interested in stimuli-responsive nano-systems, which respond to the essential pathological and physicochemical issues in diseased sites. During the last decades, researchers in the world presented, investigated, and implemented novel different nanomaterials with a focus on developing drug delivery. Polysaccharides including chitosan, alginate, hyaluronic acid, gums, and cellulose, as natural bio-materials, are suitable candidates for designing and formulations of these nano-systems because of the outstanding merits such as bio-compatibility, bio-degradability, non-toxicity, and gelling characteristics. On the other side, nanoparticles including metals (Au, Ag), metal oxides (Fe3O4, ZnO, CuO), or non-metal oxides (SiO2) and also, layered double hydroxides nanostructures have appealed significant consideration in the fields of biomedical therapeutics and cancer therapy owing to the bio-compatibility, great surface area, good chemical and mechanical features, and also proper magnetic characteristics. This comprehensive review provides an overview of current advancements in drug delivery strategies, and manufacturing methods using chitosan, alginate, hyaluronic acid, gums, and also, metals, metal oxides, non-metal oxides, and LDHs for delivery system uses.


Asunto(s)
Portadores de Fármacos/química , Nanocompuestos/química , Nanopartículas/química , Polisacáridos/química
8.
Adv Colloid Interface Sci ; 293: 102436, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34023568

RESUMEN

Recently, three-dimensional (3D) printing (also known as additive manufacturing) has received unprecedented consideration in various fields owing to many advantages compared to conventional manufacturing equipment such as reduced fabrication time, one-step production, and the ability for rapid prototyping. This promising technology, as the next manufacturing revolution and universal industrial method, allows the user to fabricate desired 3D objects using a layer-by-layer deposition of material and a 3D printer. Alginate, a versatile polysaccharide derived from seaweed, is popularly used for this advanced bio-fabrication technique due to its printability, biodegradability, biocompatibility, excellent availability, low degree of toxicity, being a relatively inexpensive, rapid gelation in the presence of Ca2+ divalent, and having fascinating chemical structure. In recent years, 3D printed alginate-based hydrogels have been prepared and used in various fields including tissue engineering, water treatment, food, electronics, and so forth. Due to the prominent role of 3D printed alginate-based materials in diverse fields. So, this review will focus and highlight the latest and most up-to-date achievements in the field of 3D printed alginate-based materials in biomedical, food, water treatment, and electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA