Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Hum Genet ; 105(6): 1126-1147, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31735293

RESUMEN

The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.


Asunto(s)
Encefalopatías/patología , Encéfalo/anomalías , Discapacidades del Desarrollo/patología , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Tiorredoxinas/metabolismo , Adolescente , Adulto , Encefalopatías/genética , Encefalopatías/metabolismo , Niño , Preescolar , Estudios de Cohortes , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Estudios de Seguimiento , Humanos , Lactante , Recién Nacido , Masculino , Proteínas de la Membrana/genética , Mitocondrias/patología , Oxidación-Reducción , Pronóstico , Piel/metabolismo , Piel/patología , Tiorredoxinas/genética , Transcriptoma
2.
Neurol Sci ; 41(8): 2157-2164, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32140910

RESUMEN

Neuromuscular diseases (NMDs) encompass a variety of ailments from muscular dystrophies to ataxias, in the course of which the functioning of the muscles is eventually either directly or indirectly impaired. The clinical diagnosis of a particular NMD is not always straightforward due to the clinical and genetic heterogeneity of the disorders under investigation. Traditional diagnostic tools such as electrophysiological tests and muscle biopsies are both invasive and painful methods, causing the patients to be reluctant. Next-generation sequencing, on the other hand, emerged as an alternative method for the diagnosis of NMDs, both with its minimally invasive nature and fast processing period. In this study, clinical exome sequencing (CES) was applied to a cohort of 70 probands in Turkey, 44 of whom received a final diagnosis, representing a diagnostic rate of 62.9%. Out of the 50 mutations identified to be causal, 26 were novel in the known 27 NMD genes. Two probands had complex/blended phenotypes. Molecular confirmation of clinical diagnosis of NMDs has a major prognostic impact and is crucial for the management and the possibility of alternative reproductive options. CES, which has been increasingly adopted to diagnose single-gene disorders, is also a powerful tool for revealing the etiopathogenesis in complex/blended phenotypes, as observed in two probands of the cohort.


Asunto(s)
Exoma , Enfermedades Neuromusculares , Exoma/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/genética , Turquía , Secuenciación del Exoma
3.
Appl Microbiol Biotechnol ; 99(16): 6775-89, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26099330

RESUMEN

One of the factors affecting chronological life span (CLS) in budding yeast is nutrient, especially carbon limitation. Aside from metabolites in the growth medium such as glucose, amino acids, and acetic acid, many pharmaceuticals have also been proven to alter CLS. Besides their impact on life span, these drugs are also prospective chemicals to treat the age-associated diseases, so the identification of their action mechanism and their potential side effects is of crucial importance. In this study, the effects of caloric restriction and metformin, a dietary mimetic pharmaceutical, on yeast CLS are compared. Saccharomyces cerevisiae cells grown in synthetic dextrose complete (SDC) up to mid-exponential phase were either treated with metformin or were subjected to glucose limitation. The impacts of these perturbations were analyzed via transcriptomics, and the common (stimulation of glucose uptake, induction of mitochondrial maintenance, and reduction of protein translation) and divergent (stimulation of aerobic respiration and reprogramming of respiratory electron transport chain (ETC)) cellular responses specific to each treatment were determined. These results revealed that both glucose limitation and metformin treatment stimulate CLS extension and involve the mitochondrial function, probably by creating an efficient mitochondria-to-nucleus signaling of either aerobic respiration or ETC signaling stimulation, respectively.


Asunto(s)
Carbono/metabolismo , Medios de Cultivo/química , Regulación Fúngica de la Expresión Génica , Metformina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Perfilación de la Expresión Génica , Redes y Vías Metabólicas , Viabilidad Microbiana/efectos de los fármacos , Mitocondrias/metabolismo , Saccharomyces cerevisiae/fisiología
4.
Stem Cell Res ; 54: 102438, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34214898

RESUMEN

Friedreich's ataxia (FRDA) is a rare neurodegenerative disorder which is caused by triplet repeat expansion (GAA) in the first intron of FXN gene. In this present study, we generated induced pluripotent stem cells (iPSC) lines from fibroblasts of three unrelated FRDA patients using integration-free episomal vectors. All iPSC lines express the pluripotency markers such as OCT4 and SSEA4, display normal karyotypes and can differentiate into all three germ layers via in vivo teratoma formation assay.


Asunto(s)
Ataxia de Friedreich , Células Madre Pluripotentes Inducidas , Proteínas de Unión a Hierro , Ataxia de Friedreich/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Intrones/genética , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Expansión de Repetición de Trinucleótido , Frataxina
5.
Front Neurosci ; 14: 578316, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33390879

RESUMEN

Glioblastoma is a malignant brain cancer with limited treatment options and high mortality rate. While established glioblastoma cell line models provide valuable information, they ultimately lose most primary characteristics of tumors under long-term serum culture conditions. Therefore, established cell lines do not necessarily recapitulate genetic and morphological characteristics of real tumors. In this study, in line with the growing interest in using primary cell line models derived from patient tissue, we generated a primary glioblastoma cell line, KUGBM8 and characterized its genetic alterations, long term growth ability, tumor formation capacity and its response to Temozolomide, the front-line chemotherapy utilized clinically. In addition, we performed a drug repurposing screen on the KUGBM8 cell line to identify FDA-approved agents that can be incorporated into glioblastoma treatment regimen and identified Topotecan as a lead drug among 1,200 drugs. We showed Topotecan can induce cell death in KUGBM8 and other primary cell lines and cooperate with Temozolomide in low dosage combinations. Together, our study provides a new primary cell line model that can be suitable for both in vitro and in vivo studies and suggests that Topotecan can offer promise as a therapeutic approach for glioblastoma.

6.
Mol Biosyst ; 9(11): 2914-31, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24056632

RESUMEN

Sphingolipids are essential building blocks of the plasma membranes and are highly bioactive in the regulation of diverse cellular functions and pathological processes, a fact which renders the sphingolipid metabolism an important research area. In this study, a computational framework was recruited for the reconstruction of a functional interaction network for sphingolipid metabolism in Baker's yeast, SSN. Gene Ontology (GO) annotations were integrated with functional interaction data of the BIOGRID database and the reconstructed protein interaction network was subjected to topological and descriptive analyses. SSN was of a scale-free nature, following a power law model with γ=1.41. Prominent processes of SSN revealed that the reconstructed network encapsulated the involvement of sphingolipid metabolism in vital cellular processes such as energy homeostasis, cell growth and/or death and synthesis of building blocks. To investigate the potential of SSN for predicting signal transduction pathways regulating and/or being regulated by sphingolipid biosynthesis in yeast, a case study involving the S. cerevisiae counterpart of AMP-activated protein kinase, the Snf1 kinase complex, was conducted. The mutant strain lacking the catalytic α subunit, snf1Δ/snf1Δ, had elevated inositol phosphorylceramide and mannosyl-inositol phosphorylceramide levels, and decreased mannosyl-diinositol phosphorylceramide levels compared to the wild type strain, revealing that Snf1p has a regulatory role in the sphingolipid metabolism. Transcriptome data belonging to that strain available in the literature were mapped onto SSN and the correlated SSN was further investigated to evaluate the possible crosstalk machineries where sphingolipids and Snf1p function in coordination, in other words the crosstalk points between sphingolipid-mediated and Snf1 kinase signalling. The subsequent investigation of the discovered candidate crosstalk processes by performing sensitivity experiments imply a tight interconnection between sphingolipids and Snf1p in the regulation of calcineurin activity, cellular metal ion homeostasis and response to cell wall and endoplasmic reticulum stresses in yeast.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Esfingolípidos/metabolismo , Biología de Sistemas/métodos , Estrés del Retículo Endoplásmico , Eliminación de Gen , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Homeostasis , Iones/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos , Unión Proteica , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
PLoS One ; 6(12): e29284, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22216232

RESUMEN

BACKGROUND: Cellular mechanisms leading to aging and therefore increasing susceptibility to age-related diseases are a central topic of research since aging is the ultimate, yet not understood mechanism of the fate of a cell. Studies with model organisms have been conducted to ellucidate these mechanisms, and chronological aging of yeast has been extensively used as a model for oxidative stress and aging of postmitotic tissues in higher eukaryotes. METHODOLOGY/PRINCIPAL FINDINGS: The chronological aging network of yeast was reconstructed by integrating protein-protein interaction data with gene ontology terms. The reconstructed network was then statistically "tuned" based on the betweenness centrality values of the nodes to compensate for the computer automated method. Both the originally reconstructed and tuned networks were subjected to topological and modular analyses. Finally, an ultimate "heart" network was obtained via pooling the step specific key proteins, which resulted from the decomposition of the linear paths depicting several signaling routes in the tuned network. CONCLUSIONS/SIGNIFICANCE: The reconstructed networks are of scale-free and hierarchical nature, following a power law model with γ  =  1.49. The results of modular and topological analyses verified that the tuning method was successful. The significantly enriched gene ontology terms of the modular analysis confirmed also that the multifactorial nature of chronological aging was captured by the tuned network. The interplay between various signaling pathways such as TOR, Akt/PKB and cAMP/Protein kinase A was summarized in the "heart" network originated from linear path analysis. The deletion of four genes, TCB3, SNA3, PST2 and YGR130C, was found to increase the chronological life span of yeast. The reconstructed networks can also give insight about the effect of other cellular machineries on chronological aging by targeting different signaling pathways in the linear path analysis, along with unraveling of novel proteins playing part in these pathways.


Asunto(s)
Senescencia Celular , Saccharomyces cerevisiae/fisiología , Algoritmos , Proteínas de Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA