Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(4): e0010224, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38470058

RESUMEN

The transmembrane serine protease 2 (TMPRSS2) activates the outer structural proteins of a number of respiratory viruses including influenza A virus (IAV), parainfluenza viruses, and various coronaviruses for membrane fusion. Previous studies showed that TMPRSS2 interacts with the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), a cell surface protein that serves as an entry receptor for some coronaviruses. Here, by using protease activity assays, we determine that ACE2 increases the enzymatic activity of TMPRSS2 in a non-catalytic manner. Furthermore, we demonstrate that ACE2 knockdown inhibits TMPRSS2-mediated cleavage of IAV hemagglutinin (HA) in Calu-3 human airway cells and suppresses virus titers 100- to 1.000-fold. Transient expression of ACE2 in ACE2-deficient cells increased TMPRSS2-mediated HA cleavage and IAV replication. ACE2 knockdown also reduced titers of MERS-CoV and prevented S cleavage by TMPRSS2 in Calu-3 cells. By contrast, proteolytic activation and multicycle replication of IAV with multibasic HA cleavage site typically cleaved by furin were not affected by ACE2 knockdown. Co-immunoprecipitation analysis revealed that ACE2-TMPRSS2 interaction requires the enzymatic activity of TMPRSS2 and the carboxypeptidase domain of ACE2. Together, our data identify ACE2 as a new co-factor or stabilizer of TMPRSS2 activity and as a novel host cell factor involved in proteolytic activation and spread of IAV in human airway cells. Furthermore, our data indicate that ACE2 is involved in the TMPRSS2-catalyzed activation of additional respiratory viruses including MERS-CoV.IMPORTANCEProteolytic cleavage of viral envelope proteins by host cell proteases is essential for the infectivity of many viruses and relevant proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of several respiratory viruses, including influenza A virus. TMPRSS2 was previously shown to interact with angiotensin-converting enzyme 2 (ACE2). Here, we report the mechanistic details of this interaction. We demonstrate that ACE2 increases or stabilizes the enzymatic activity of TMPRSS2. Furthermore, we describe ACE2 involvement in TMPRSS2-catalyzed cleavage of the influenza A virus hemagglutinin and MERS-CoV spike protein in human airway cells. These findings expand our knowledge of the activation of respiratory viruses by TMPRSS2 and the host cell factors involved. In addition, our results could help to elucidate a physiological role for TMPRSS2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Virus de la Influenza A , Pulmón , Proteolisis , Serina Endopeptidasas , Animales , Perros , Humanos , Enzima Convertidora de Angiotensina 2/deficiencia , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Biocatálisis , Línea Celular , Furina/metabolismo , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/crecimiento & desarrollo , Virus de la Influenza A/metabolismo , Pulmón/citología , Pulmón/virología , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Unión Proteica , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Replicación Viral
2.
Biologicals ; 86: 101753, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38492418

RESUMEN

Biopharmaceutical manufacturing processes may include a low pH treatment step as a means of inactivating enveloped viruses. Small scale virus clearance studies are routinely performed using model enveloped viruses such as murine leukemia virus to assess inactivation at the pH range used in the downstream manufacturing process. Further, as a means of bioburden reduction, chromatography resins may be cleaned and stored using sodium hydroxide and this can also inactivate viruses. The susceptibility of SARS-CoV-2 and SARS-CoV to low pH conditions using protein A eluate derived material from a monoclonal antibody production process as well as high pH cleaning conditions was addressed. SARS-CoV-2 was effectively inactivated at pH 3.0, moderately inactivated at pH 3.4, but not inactivated at pH 3.8. Low pH was less effective at inactivating SARS-CoV. Both viruses were inactivated at a high pH of ca.13.4. These studies provide important information regarding the effectiveness of viral clearance and inactivation steps of novel coronaviruses when compared to other enveloped viruses.


Asunto(s)
Anticuerpos Monoclonales , SARS-CoV-2 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Inactivación de Virus , Concentración de Iones de Hidrógeno , SARS-CoV-2/efectos de los fármacos , Inactivación de Virus/efectos de los fármacos , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/aislamiento & purificación , Humanos , Proteína Estafilocócica A/química , Animales , COVID-19/virología , Chlorocebus aethiops , Células Vero
3.
Cell Commun Signal ; 21(1): 65, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978183

RESUMEN

Gram-negative bacteria naturally secrete nano-sized outer membrane vesicles (OMVs), which are important mediators of communication and pathogenesis. OMV uptake by host cells activates TLR signalling via transported PAMPs. As important resident immune cells, alveolar macrophages are located at the air-tissue interface where they comprise the first line of defence against inhaled microorganisms and particles. To date, little is known about the interplay between alveolar macrophages and OMVs from pathogenic bacteria. The immune response to OMVs and underlying mechanisms are still elusive. Here, we investigated the response of primary human macrophages to bacterial vesicles (Legionella pneumophila, Klebsiella pneumoniae, Escherichia coli, Salmonella enterica, Streptococcus pneumoniae) and observed comparable NF-κB activation across all tested vesicles. In contrast, we describe differential type I IFN signalling with prolonged STAT1 phosphorylation and strong Mx1 induction, blocking influenza A virus replication only for Klebsiella, E.coli and Salmonella OMVs. OMV-induced antiviral effects were less pronounced for endotoxin-free Clear coli OMVs and Polymyxin-treated OMVs. LPS stimulation could not mimic this antiviral status, while TRIF knockout abrogated it. Importantly, supernatant from OMV-treated macrophages induced an antiviral response in alveolar epithelial cells (AEC), suggesting OMV-induced intercellular communication. Finally, results were validated in an ex vivo infection model with primary human lung tissue. In conclusion, Klebsiella, E.coli and Salmonella OMVs induce antiviral immunity in macrophages via TLR4-TRIF-signaling to reduce viral replication in macrophages, AECs and lung tissue. These gram-negative bacteria induce antiviral immunity in the lung through OMVs, with a potential decisive and tremendous impact on bacterial and viral coinfection outcome. Video Abstract.


Asunto(s)
Vesículas Extracelulares , Receptor Toll-Like 4 , Humanos , Proteínas Adaptadoras del Transporte Vesicular , Escherichia coli , Macrófagos , Replicación Viral
4.
J Virol ; 95(20): e0090621, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34319155

RESUMEN

Cleavage of the influenza A virus (IAV) hemagglutinin (HA) by host proteases is indispensable for virus replication. Most IAVs possess a monobasic HA cleavage site cleaved by trypsin-like proteases. Previously, the transmembrane protease TMPRSS2 was shown to be essential for proteolytic activation of IAV HA subtypes H1, H2, H7, and H10 in mice. In contrast, additional proteases are involved in activation of certain H3 IAVs, indicating that HAs with monobasic cleavage sites can differ in their sensitivity to host proteases. Here, we investigated the role of TMPRSS2 in proteolytic activation of avian HA subtypes H1 to H11 and H14 to H16 in human and mouse airway cell cultures. Using reassortant viruses carrying representative HAs, we analyzed HA cleavage and multicycle replication in (i) lung cells of TMPRSS2-deficient mice and (ii) Calu-3 cells and primary human bronchial cells subjected to morpholino oligomer-mediated knockdown of TMPRSS2 activity. TMPRSS2 was found to be crucial for activation of H1 to H11, H14, and H15 in airway cells of human and mouse. Only H9 with an R-S-S-R cleavage site and H16 were proteolytically activated in the absence of TMPRSS2 activity, albeit with reduced efficiency. Moreover, a TMPRSS2-orthologous protease from duck supported activation of H1 to H11, H15, and H16 in MDCK cells. Together, our data demonstrate that in human and murine respiratory cells, TMPRSS2 is the major activating protease of almost all IAV HA subtypes with monobasic cleavage sites. Furthermore, our results suggest that TMPRSS2 supports activation of IAV with a monobasic cleavage site in ducks. IMPORTANCE Human infections with avian influenza A viruses upon exposure to infected birds are frequently reported and have received attention as a potential pandemic threat. Cleavage of the envelope glycoprotein hemagglutinin (HA) by host proteases is a prerequisite for membrane fusion and essential for virus infectivity. In this study, we identify the transmembrane protease TMPRSS2 as the major activating protease of avian influenza virus HAs of subtypes H1 to H11, H14 and H15 in human and murine airway cells. Our data demonstrate that inhibition of TMPRSS2 activity may provide a useful approach for the treatment of human infections with avian influenza viruses that should be considered for pandemic preparedness as well. Additionally, we show that a TMPRSS2-orthologous protease from duck can activate avian influenza virus HAs with a monobasic cleavage site and, thus, represents a potential virus-activating protease in waterfowl, the primary reservoir for influenza A viruses.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Bronquios/citología , Línea Celular , Perros , Femenino , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas Virales/genética , Hemaglutininas Virales/metabolismo , Interacciones Huésped-Patógeno , Humanos , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Pulmón/virología , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptido Hidrolasas/metabolismo , Proteolisis , Mucosa Respiratoria/metabolismo , Serina Endopeptidasas/fisiología , Replicación Viral
5.
Anal Biochem ; 655: 114836, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35964735

RESUMEN

Proprotein convertases (PCs) are involved in the pathogenesis of various diseases, making them promising drug targets. Most assays for PCs have been performed with few standard substrates, regardless of differences in cleavage efficiencies. Derived from studies on substrate-analogue inhibitors, 11 novel substrates were synthesized and characterized with five PCs. H-Arg-Arg-Tle-Lys-Arg-AMC is the most efficiently cleaved furin substrate based on its kcat/KM value. Due to its higher kcat value, acetyl-Arg-Arg-Tle-Arg-Arg-AMC was selected for further measurements to demonstrate the benefit of this improved substrate. Compared to our standard conditions, its use allowed a 10-fold reduction of the furin concentration, which enabled Ki value determinations of previously described tight-binding inhibitors under classical conditions. Under these circumstances, a slow-binding behavior was observed for the first time with inhibitor MI-1148. In addition to furin, four additional PCs were used to characterize these substrates. The most efficiently cleaved PC1/3 substrate was acetyl-Arg-Arg-Arg-Tle-Lys-Arg-AMC. The highest kcat/KM values for PC2 and PC7 were found for the N-terminally unprotected analogue of this substrate, although other substrates possess higher kcat values. The highest efficiency for PC5/6A was observed for the substrate acetyl-Arg-Arg-Tle-Lys-Arg-AMC. In summary, we have identified new substrates for furin, PC1/3, PC2, and PC7 suitable for improved enzyme-kinetic measurements.


Asunto(s)
Furina , Proproteína Convertasas , Secuencia de Aminoácidos , Carbamatos , Colorantes Fluorescentes , Oligopéptidos , Proteínas , Subtilisinas/metabolismo
6.
J Biol Chem ; 295(33): 11388-11407, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32303635

RESUMEN

Cleavage of influenza virus hemagglutinin (HA) by host proteases is essential for virus infectivity. HA of most influenza A and B (IAV/IBV) viruses is cleaved at a monobasic motif by trypsin-like proteases. Previous studies have reported that transmembrane serine protease 2 (TMPRSS2) is essential for activation of H7N9 and H1N1pdm IAV in mice but that H3N2 IAV and IBV activation is independent of TMPRSS2 and carried out by as-yet-undetermined protease(s). Here, to identify additional H3 IAV- and IBV-activating proteases, we used RNA-Seq to investigate the protease repertoire of murine lower airway tissues, primary type II alveolar epithelial cells (AECIIs), and the mouse lung cell line MLE-15. Among 13 candidates identified, TMPRSS4, TMPRSS13, hepsin, and prostasin activated H3 and IBV HA in vitro IBV activation and replication was reduced in AECIIs from Tmprss2/Tmprss4-deficient mice compared with WT or Tmprss2-deficient mice, indicating that murine TMPRSS4 is involved in IBV activation. Multicycle replication of H3N2 IAV and IBV in AECIIs of Tmprss2/Tmprss4-deficient mice varied in sensitivity to protease inhibitors, indicating that different, but overlapping, sets of murine proteases facilitate H3 and IBV HA cleavages. Interestingly, human hepsin and prostasin orthologs did not activate H3, but they did activate IBV HA in vitro Our results indicate that TMPRSS4 is an IBV-activating protease in murine AECIIs and suggest that TMPRSS13, hepsin, and prostasin cleave H3 and IBV HA in mice. They further show that hepsin and prostasin orthologs might contribute to the differences observed in TMPRSS2-independent activation of H3 in murine and human airways.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Gripe Humana/enzimología , Infecciones por Orthomyxoviridae/enzimología , Péptido Hidrolasas/metabolismo , Activación Viral , Animales , Línea Celular , Perros , Activación Enzimática/efectos de los fármacos , Perfilación de la Expresión Génica , Células HEK293 , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza B/efectos de los fármacos , Gripe Humana/tratamiento farmacológico , Gripe Humana/genética , Gripe Humana/virología , Pulmón/enzimología , Pulmón/metabolismo , Pulmón/virología , Células de Riñón Canino Madin Darby , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/virología , Péptido Hidrolasas/genética , Inhibidores de Proteasas/farmacología , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Activación Viral/efectos de los fármacos
7.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31391268

RESUMEN

Cleavage of influenza virus hemagglutinin (HA) by host cell proteases is essential for virus infectivity and spread. We previously demonstrated in vitro that the transmembrane protease TMPRSS2 cleaves influenza A virus (IAV) and influenza B virus (IBV) HA possessing a monobasic cleavage site. Subsequent studies revealed that TMPRSS2 is crucial for the activation and pathogenesis of H1N1pdm and H7N9 IAV in mice. In contrast, activation of H3N2 IAV and IBV was found to be independent of TMPRSS2 expression and supported by an as-yet-undetermined protease(s). Here, we investigated the role of TMPRSS2 in proteolytic activation of IAV and IBV in three human airway cell culture systems: primary human bronchial epithelial cells (HBEC), primary type II alveolar epithelial cells (AECII), and Calu-3 cells. Knockdown of TMPRSS2 expression was performed using a previously described antisense peptide-conjugated phosphorodiamidate morpholino oligomer, T-ex5, that interferes with splicing of TMPRSS2 pre-mRNA, resulting in the expression of enzymatically inactive TMPRSS2. T-ex5 treatment produced efficient knockdown of active TMPRSS2 in all three airway cell culture models and prevented proteolytic activation and multiplication of H7N9 IAV in Calu-3 cells and H1N1pdm, H7N9, and H3N2 IAV in HBEC and AECII. T-ex5 treatment also inhibited the activation and spread of IBV in AECII but did not affect IBV activation in HBEC and Calu-3 cells. This study identifies TMPRSS2 as the major HA-activating protease of IAV in human airway cells and IBV in type II pneumocytes and as a potential target for the development of novel drugs to treat influenza infections.IMPORTANCE Influenza A viruses (IAV) and influenza B viruses (IBV) cause significant morbidity and mortality during seasonal outbreaks. Cleavage of the viral surface glycoprotein hemagglutinin (HA) by host proteases is a prerequisite for membrane fusion and essential for virus infectivity. Inhibition of relevant proteases provides a promising therapeutic approach that may avoid the development of drug resistance. HA of most influenza viruses is cleaved at a monobasic cleavage site, and a number of proteases have been shown to cleave HA in vitro This study demonstrates that the transmembrane protease TMPRSS2 is the major HA-activating protease of IAV in primary human bronchial cells and of both IAV and IBV in primary human type II pneumocytes. It further reveals that human and murine airway cells can differ in their HA-cleaving protease repertoires. Our data will help drive the development of potent and selective protease inhibitors as novel drugs for influenza treatment.


Asunto(s)
Virus de la Influenza A/fisiología , Virus de la Influenza B/fisiología , Gripe Humana/virología , Serina Endopeptidasas/metabolismo , Animales , Bronquios/citología , Células Cultivadas , Células Epiteliales/virología , Técnicas de Silenciamiento del Gen , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno , Humanos , Gripe Humana/enzimología , Gripe Humana/metabolismo , Ratones , Infecciones por Orthomyxoviridae/enzimología , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología , Alveolos Pulmonares/citología , Serina Endopeptidasas/genética , Regulación hacia Arriba , Replicación Viral
8.
Int J Mol Sci ; 21(7)2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231159

RESUMEN

Highly pathogenic (HP) avian influenza viruses (AIVs) are naturally restricted to H5 and H7 subtypes with a polybasic cleavage site (CS) in hemagglutinin (HA) and any AIV with an intravenous pathogenicity index (IVPI) ≥ 1.2. Although only a few non-H5/H7 viruses fulfill the criteria of HPAIV; it remains unclear why these viruses did not spread in domestic birds. In 2012, a unique H4N2 virus with a polybasic CS 322PEKRRTR/G329 was isolated from quails in California which, however, was avirulent in chickens. This is the only known non-H5/H7 virus with four basic amino acids in the HACS. Here, we investigated the virulence of this virus in chickens after expansion of the polybasic CS by substitution of T327R (322PEKRRRR/G329) or T327K (322PEKRRKR/G329) with or without reassortment with HPAIV H5N1 and H7N7. The impact of single mutations or reassortment on virus fitness in vitro and in vivo was studied. Efficient cell culture replication of T327R/K carrying H4N2 viruses increased by treatment with trypsin, particularly in MDCK cells, and reassortment with HPAIV H5N1. Replication, virus excretion and bird-to-bird transmission of H4N2 was remarkably compromised by the CS mutations, but restored after reassortment with HPAIV H5N1, although not with HPAIV H7N7. Viruses carrying the H4-HA with or without R327 or K327 mutations and the other seven gene segments from HPAIV H5N1 exhibited high virulence and efficient transmission in chickens. Together, increasing the number of basic amino acids in the H4N2 HACS was detrimental for viral fitness particularly in vivo but compensated by reassortment with HPAIV H5N1. This may explain the absence of non-H5/H7 HPAIV in poultry.


Asunto(s)
Pollos/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Gripe Aviar/transmisión , Sustitución de Aminoácidos , Animales , Perros , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Virus de la Influenza A/patogenicidad , Gripe Aviar/patología , Gripe Aviar/virología , Células de Riñón Canino Madin Darby , Virulencia
9.
J Pathol ; 245(2): 153-159, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29574785

RESUMEN

Trophic functions for macrophages are emerging as key mediators of developmental processes, including bone, vessel, and mammary gland development. Yolk sac-derived macrophages mature in the distal lung shortly after birth. Myeloid-lineage macrophages are recruited to the lung and are activated under pathological conditions. These pathological conditions include bronchopulmonary dysplasia (BPD), a common complication of preterm birth characterized by stunted lung development, where the formation of alveoli is blocked. No study has addressed causal roles for immune cells in lung alveolarization. We employed antibody-based and transgenic death receptor-based depletion approaches to deplete or prevent lung recruitment of immune cell populations in a hyperoxia-based mouse model of BPD. Neither neutrophils nor exudate macrophages (which might include lung interstitial macrophages) contributed to structural perturbations to the lung that were provoked by hyperoxia; however, cells of the Csf1r-expressing monocyte/macrophage lineage were implicated as causal mediators of stunted lung development. We propose that resident alveolar macrophages differentiate into a population of CD45+ CD11c+ SiglecF+ CD11b+ CD68+ MHCII+ cells, which are activated by hyperoxia, and contribute to disturbances to the structural development of the immature lung. This is the first report that causally implicates immune cells in pathological disturbances to postnatal lung organogenesis. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Displasia Broncopulmonar/patología , Activación de Macrófagos , Macrófagos Alveolares/patología , Alveolos Pulmonares/patología , Animales , Animales Recién Nacidos , Biomarcadores/metabolismo , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/inmunología , Displasia Broncopulmonar/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , Hiperoxia/complicaciones , Hiperoxia/metabolismo , Hiperoxia/patología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones Endogámicos C57BL , Organogénesis , Fenotipo , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/metabolismo , Transducción de Señal
10.
J Virol ; 88(1): 282-91, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24155384

RESUMEN

Pigs are important natural hosts of influenza A viruses, and due to their susceptibility to swine, avian, and human viruses, they may serve as intermediate hosts supporting adaptation and genetic reassortment. Cleavage of the influenza virus surface glycoprotein hemagglutinin (HA) by host cell proteases is essential for viral infectivity. Most influenza viruses, including human and swine viruses, are activated at a monobasic HA cleavage site, and we previously identified TMPRSS2 and HAT to be relevant proteases present in human airways. We investigated the proteolytic activation of influenza viruses in primary porcine tracheal and bronchial epithelial cells (PTEC and PBEC, respectively). Human H1N1 and H3N2 viruses replicated efficiently in PTECs and PBECs, and viruses containing cleaved HA were released from infected cells. Moreover, the cells supported the proteolytic activation of HA at the stage of entry. We found that swine proteases homologous to TMPRSS2 and HAT, designated swTMPRSS2 and swAT, respectively, were expressed in several parts of the porcine respiratory tract. Both proteases cloned from primary PBECs were shown to activate HA with a monobasic cleavage site upon coexpression and support multicycle replication of influenza viruses. swAT was predominantly localized at the plasma membrane, where it was present as an active protease that mediated activation of incoming virus. In contrast, swTMPRSS2 accumulated in the trans-Golgi network, suggesting that it cleaves HA in this compartment. In conclusion, our data show that HA activation in porcine airways may occur by similar proteases and at similar stages of the viral life cycle as in human airways.


Asunto(s)
Bronquios/virología , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Péptido Hidrolasas/metabolismo , Tráquea/virología , Animales , Secuencia de Bases , Bronquios/citología , Cartilla de ADN , Humanos , Proteolisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos , Tráquea/citología , Replicación Viral
11.
J Virol ; 88(9): 4744-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24522916

RESUMEN

UNLABELLED: Cleavage of the hemagglutinin (HA) by host proteases is essential for the infectivity of influenza viruses. Here, we analyzed the role of the serine protease TMPRSS2, which activates HA in the human respiratory tract, in pathogenesis in a mouse model. Replication of the human H7N9 isolate A/Anhui/1/13 and of human H1N1 and H3N2 viruses was compared in TMPRSS2 knockout (TMPRSS2(-/-)) and wild-type (WT) mice. Knockout of TMPRSS2 expression inhibited H7N9 influenza virus replication in explants of murine tracheas, bronchi, and lungs. H1N1 virus replication was also strongly suppressed in airway explants of TMPRSS2(-/-) mice, while H3N2 virus replication was only marginally affected. H7N9 and H1N1 viruses were apathogenic in TMPRSS2(-/-) mice, whereas WT mice developed severe disease with mortality rates of 100% and 20%, respectively. In contrast, all H3N2 infected TMPRSS2(-/-) and WT mice succumbed to lethal infection. Cleavage analysis showed that H7 and H1 are efficiently activated by TMPRSS2, whereas H3 is less susceptible to the protease. Our data demonstrate that TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 and H1N1 influenza virus in mice. In contrast, replication of H3N2 virus appears to depend on another, not yet identified protease, supporting the concept that human influenza viruses differ in protease specificity. IMPORTANCE: Cleavage of the hemagglutinin (HA) by host proteases is essential for the infectivity of influenza virus, but little is known about its relevance for pathogenesis in mammals. Here, we show that knockout mice that do not express the HA-activating protease TMPRSS2 are resistant to pulmonary disease with lethal outcome when infected with influenza A viruses of subtypes H7N9 and H1N1, whereas they are not protected from lethal H3N2 virus infection. These findings demonstrate that human influenza viruses differ in protease specificity, and that expression of the appropriate protease in respiratory tissues is essential for pneumotropism and pathogenicity. Our observations also demonstrate that HA-activating proteases and in particular TMPRSS2 are promising targets for influenza therapy.


Asunto(s)
Interacciones Huésped-Patógeno , Subtipo H7N9 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Pulmón/virología , Serina Endopeptidasas/metabolismo , Tropismo Viral , Estructuras Animales/virología , Animales , Subtipo H1N1 del Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Serina Endopeptidasas/genética , Análisis de Supervivencia , Tráquea/virología , Virulencia
12.
Curr Top Microbiol Immunol ; 385: 3-34, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25031010

RESUMEN

The hemagglutinin (HA) is a prime determinant of the pathogenicity of influenza A viruses. It initiates infection by binding to cell surface receptors and by inducing membrane fusion. The fusion capacity of HA depends on cleavage activation by host proteases, and it has long been known that highly pathogenic avian influenza viruses displaying a multibasic cleavage site differ in protease sensitivity from low pathogenic avian and mammalian influenza viruses with a monobasic cleavage site. Evidence is increasing that there are also variations in proteolytic activation among the viruses with a monobasic cleavage site, and several proteases have been identified recently that activate these viruses in a natural setting. Differences in protease sensitivity of HA and in tissue specificity of the enzymes are important determinants for virus tropism in the respiratory tract and for systemic spread of infection. Protease inhibitors that interfere with cleavage activation have the potential to be used for antiviral therapy and attenuated viruses have been generated by mutation of the cleavage site that can be used for the development of inactivated and live vaccines. It has long been known that human and avian influenza viruses differ in their specificity for sialic acid-containing cell receptors, and it is now clear that human tissues contain also receptors for avian viruses. Differences in receptor-binding specificity of seasonal and zoonotic viruses and differential expression of receptors for these viruses in the human respiratory tract account, at least partially, for the severity of disease. Receptor binding and fusion activation are modulated by HA glycosylation, and interaction of the glycans of HA with cellular lectins also affects virus infectivity. Interestingly, some of the mechanisms underlying pathogenicity are determinants of host range and transmissibility, as well.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/metabolismo , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología , Animales , Aves , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Virus de la Influenza A/genética , Gripe Aviar/genética , Gripe Aviar/metabolismo , Gripe Humana/genética , Gripe Humana/metabolismo , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/metabolismo , Receptores Virales/genética , Tropismo Viral
13.
J Virol ; 87(3): 1811-20, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23192872

RESUMEN

Influenza A viruses of the subtype H9N2 circulate worldwide and have become highly prevalent in poultry in many countries. Moreover, they are occasionally transmitted to humans, raising concern about their pandemic potential. Influenza virus infectivity requires cleavage of the surface glycoprotein hemagglutinin (HA) at a distinct cleavage site by host cell proteases. H9N2 viruses vary remarkably in the amino acid sequence at the cleavage site, and many isolates from Asia and the Middle East possess the multibasic motifs R-S-S-R and R-S-R-R, but are not activated by furin. Here, we investigated proteolytic activation of the early H9N2 isolate A/turkey/Wisconsin/1/66 (H9-Wisc) and two recent Asian isolates, A/quail/Shantou/782/00 (H9-782) and A/quail/Shantou/2061/00 (H9-2061), containing mono-, di-, and tribasic HA cleavage sites, respectively. All H9N2 isolates were activated by human proteases TMPRSS2 (transmembrane protease, serine S1 member 2) and HAT (human airway trypsin-like protease). Interestingly, H9-782 and H9-2061 were also activated by matriptase, a protease widely expressed in most epithelia with high expression levels in the kidney. Nephrotropism of H9N2 viruses has been observed in chickens, and here we found that H9-782 and H9-2061 were proteolytically activated in canine kidney (MDCK-II) and chicken embryo kidney (CEK) cells, whereas H9-Wisc was not. Virus activation was inhibited by peptide-mimetic inhibitors of matriptase, strongly suggesting that matriptase is responsible for HA cleavage in these kidney cells. Our data demonstrate that H9N2 viruses with R-S-S-R or R-S-R-R cleavage sites are activated by matriptase in addition to HAT and TMPRSS2 and, therefore, can be activated in a wide range of tissues what may affect virus spread, tissue tropism and pathogenicity.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno , Subtipo H9N2 del Virus de la Influenza A/fisiología , Serina Endopeptidasas/metabolismo , Internalización del Virus , Animales , Línea Celular , Pollos , Perros , Humanos
14.
Cell Mol Life Sci ; 70(19): 3695-708, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23619613

RESUMEN

Posttranslational modification of the neural cell adhesion molecule (NCAM) by polysialic acid (polySia) is well studied in the nervous system and described as a dynamic modulator of plastic processes like precursor cell migration, axon fasciculation, and synaptic plasticity. Here, we describe a novel function of polysialylated NCAM (polySia-NCAM) in innate immunity of the lung. In mature lung tissue of healthy donors, polySia was exclusively attached to the transmembrane isoform NCAM-140 and located to intracellular compartments of epithelial cells. In patients with chronic obstructive pulmonary disease, however, increased polySia levels and processing of the NCAM carrier were observed. Processing of polysialylated NCAM was reproduced in a mouse model by bleomycin administration leading to an activation of the inflammasome and secretion of interleukin (IL)-1ß. As shown in a cell culture model, polySia-NCAM-140 was kept in the late trans-Golgi apparatus of lung epithelial cells and stimulation by IL-1ß or lipopolysaccharide induced metalloprotease-mediated ectodomain shedding, resulting in the secretion of soluble polySia-NCAM. Interestingly, polySia chains of secreted NCAM neutralized the cytotoxic activity of extracellular histones as well as DNA/histone-network-containing "neutrophil extracellular traps", which are formed during invasion of microorganisms. Thus, shedding of polySia-NCAM by lung epithelial cells may provide a host-protective mechanism to reduce tissue damage during inflammatory processes.


Asunto(s)
Inmunidad Innata/inmunología , Pulmón/inmunología , Moléculas de Adhesión de Célula Nerviosa/inmunología , Ácidos Siálicos/inmunología , Adulto , Animales , Línea Celular Tumoral , Células Epiteliales/inmunología , Femenino , Histonas/inmunología , Humanos , Inflamasomas/inmunología , Interleucina-1beta/inmunología , Lipopolisacáridos/inmunología , Masculino , Proteínas de la Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Modelos Moleculares , Neutrófilos/inmunología , Isoformas de Proteínas , Procesamiento Proteico-Postraduccional , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Regulación hacia Arriba/inmunología , Red trans-Golgi/inmunología
15.
Biochem J ; 452(2): 331-43, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23527573

RESUMEN

TMPRSS2 (transmembrane serine proteinase 2) is a multidomain type II transmembrane serine protease that cleaves the surface glycoprotein HA (haemagglutinin) of influenza viruses with a monobasic cleavage site, which is a prerequisite for virus fusion and propagation. Furthermore, it activates the fusion protein F of the human metapneumovirus and the spike protein S of the SARS-CoV (severe acute respiratory syndrome coronavirus). Increased TMPRSS2 expression was also described in several tumour entities. Therefore TMPRSS2 emerged as a potential target for drug design. The catalytic domain of TMPRSS2 was expressed in Escherichia coli and used for an inhibitor screen with previously synthesized inhibitors of various trypsin-like serine proteases. Two inhibitor types were identified which inhibit TMPRSS2 in the nanomolar range. The first series comprises substrate analogue inhibitors containing a 4-amidinobenzylamide moiety at the P1 position, whereby some of these analogues possess inhibition constants of approximately 20 nM. An improved potency was found for a second type derived from sulfonylated 3-amindinophenylalanylamide derivatives. The most potent derivative of this series inhibits TMPRSS2 with a K(i) value of 0.9 nM and showed an efficient blockage of influenza virus propagation in human airway epithelial cells. On the basis of the inhibitor studies, a series of new fluorogenic substrates containing a D-arginine residue at the P3 position was synthesized, some of them were efficiently cleaved by TMPRSS2.


Asunto(s)
Antivirales/farmacología , Diseño de Fármacos , Virus de la Influenza A/efectos de los fármacos , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/farmacología , Activación Viral/efectos de los fármacos , Antivirales/síntesis química , Dominio Catalítico/efectos de los fármacos , Dominio Catalítico/genética , Línea Celular , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Serina Endopeptidasas/biosíntesis , Inhibidores de Serina Proteinasa/genética , Activación Viral/genética
16.
Virus Res ; : 199430, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964470

RESUMEN

A multistep priming process involving furin and endosomal cathepsin B and L (CatB/L) has been described for the Orthoebolavirus zairense (EBOV) glycoprotein GP. Inhibition or knockdown of either furin or endosomal cathepsins, however, did not prevent virus multiplication in cell cultures. Moreover, an EBOV mutant lacking the furin cleavage motif (RRTRR→AGTAA) was able to replicate and cause fatal disease in nonhuman primates, indicating that furin cleavage may be dispensable for virus infectivity. Here, by using protease inhibitors and EBOV GP-carrying recombinant vesicular stomatitis virus (VSV) and transcription and replication-competent virus-like particles (trVLPs) we found that processing of EBOV GP is mediated by different proteases in different cell lines depending on the protease repertoire available. Endosomal cathepsins were essential for EBOV GP entry in Huh-7 but not in Vero cells, in which trypsin-like proteases and stably expressed trypsin-like transmembrane serine protease 2 (TMPRSS2) supported wild-type EBOV GP and EBOV GP_AGTAA mutant entry. Furthermore, we show that the EBOV GP_AGTAA mutant is cleaved into fusion-competent GP2 by TMPRSS2 and by CatL at a so far unknown site. Fluorescence microscopy co-localization studies indicate that EBOV GP cleavage by TMPRSS2 may occur in the TGN prior to virus release or in the late endosome at the stage of virus entry into a new cell. Our data show that EBOV GP must be proteolytically activated to support virus entry but has even greater flexibility in terms of proteases and the precise cleavage site than previously assumed.

17.
ChemMedChem ; 19(9): e202400057, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38385828

RESUMEN

A 1H-isoindol-3-amine was identified as suitable P1 group for the proprotein convertase furin using a crystallographic screening with a set of 20 fragments known to occupy the S1 pocket of trypsin-like serine proteases. Its binding mode is very similar to that observed for the P1 group of benzamidine-derived peptidic furin inhibitors suggesting an aminomethyl substitution of this fragment to obtain a couplable P1 residue for the synthesis of substrate-analogue furin inhibitors. The obtained inhibitors possess a slightly improved picomolar inhibitory potency compared to their benzamidine-derived analogues. The crystal structures of two inhibitors in complex with furin revealed that the new P1 group is perfectly suited for incorporation in peptidic furin inhibitors. Selected inhibitors were tested for antiviral activity against respiratory syncytial virus (RSV) and a furin-dependent influenza A virus (SC35M/H7N7) in A549 human lung cells and demonstrated an efficient inhibition of virus activation and replication at low micromolar or even submicromolar concentrations. First results suggest that the Mas-related G-protein coupled receptor GPCR-X2 could be a potential off-target for certain benzamidine-derived furin inhibitors.


Asunto(s)
Antivirales , Diseño de Fármacos , Furina , Furina/antagonistas & inhibidores , Furina/metabolismo , Humanos , Antivirales/farmacología , Antivirales/síntesis química , Antivirales/química , Relación Estructura-Actividad , Células A549 , Virus de la Influenza A/efectos de los fármacos , Cristalografía por Rayos X , Indoles/farmacología , Indoles/química , Indoles/síntesis química , Estructura Molecular , Modelos Moleculares , Virus Sincitiales Respiratorios/efectos de los fármacos , Relación Dosis-Respuesta a Droga
18.
Curr Opin Virol ; 58: 101303, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36753938

RESUMEN

While receptor binding is well recognized as a factor in influenza-A virus (IAV) and coronavirus (CoV) host adaptation, the role of viral glycoprotein cleavage has not been studied in detail so far. Interestingly, recent studies suggest that host species may differ in their protease repertoire available for cleavage. Furthermore, it was shown for certain bat-derived CoVs that proteolytic activation provides a critical barrier to infect human cells. Understanding the role of glycoprotein cleavage in different species and how IAV and CoVs adapt to a new protease repertoire may allow evaluating the zoonotic potential and risk posed by these viruses. Here, we summarize the current knowledge on the emergence of a multibasic cleavage site (CS) in the glycoproteins of IAVs and CoVs in different host species. Additionally, we discuss the role of transmembrane serine protease 2 (TMPRSS2) in virus activation and entry and a role of neuropilin-1 in acquisition of a multibasic CS in different hosts.


Asunto(s)
Infecciones por Coronavirus , Coronavirus , Virus de la Influenza A , Gripe Humana , Humanos , Adaptación al Huésped , Virus de la Influenza A/fisiología , Péptido Hidrolasas , Internalización del Virus , Glicoproteínas , Proteínas Virales/metabolismo
19.
Biomedicines ; 11(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36830955

RESUMEN

BACKGROUND: The transmembrane protease serine 2 (TMPRSS2) proteolytically activates the envelope proteins of several viruses for viral entry via membrane fusion and is therefore an interesting and promising target for the development of broad-spectrum antivirals. However, the use of a host protein as a target may lead to potential side effects, especially on the immune system. We examined the effect of a genetic deletion of TMPRSS2 on dendritic cells. METHODS: Bone marrow cells from wild-type (WT) and TMPRSS2-deficient mice (TMPRSS2-/-) were differentiated to plasmacytoid dendritic cells (pDCs) and classical DCs (cDCs) and activated with various toll-like receptor (TLR) agonists. We analyzed the released cytokines and the mRNA expression of chemokine receptors, TLR7, TLR9, IRF7 and TCF4 stimulation. RESULTS: In cDCs, the lack of TMPRSS2 led to an increase in IL12 and IFNγ in TLR7/8 agonist resiquimod or TLR 9 agonist ODN 1668-activated cells. Only IL-10 was reduced in TMPRSS2-/- cells in comparison to WT cells activated with ODN 1668. In resiquimod-activated pDCs, the lack of TMPRSS2 led to a decrease in IL-6, IL-10 and INFγ. ODN 1668 activation led to a reduction in IFNα. The effect on receptor expression in pDCs and cDCs was low. CONCLUSION: The effect of TMPRSS2 on pDCS and cDCs depends on the activated TLR, and TMPRSS2 seems to affect cytokine release differently in pDCs and cDCs. In cDCs, TMPRSS2 seems to suppress cytokine release, whereas in pDCS TMPRSS2 possibly mediates cytokine release.

20.
Life Sci Alliance ; 6(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37208193

RESUMEN

Many viruses require proteolytic activation of their envelope proteins for infectivity, and relevant host proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of influenza A virus (IAV) and various coronaviruses (CoV). Increased TMPRSS2 expression has been associated with a higher risk of severe influenza infection and enhanced susceptibility to SARS-CoV-2. Here, we found that Legionella pneumophila stimulates the increased expression of TMPRSS2-mRNA in Calu-3 human airway cells. We identified flagellin as the dominant structural component inducing TMPRSS2 expression. The flagellin-induced increase was not observed at this magnitude for other virus-activating host proteases. TMPRSS2-mRNA expression was also significantly increased by LPS, Pam3Cys, and Streptococcus pneumoniae, although less pronounced. Multicycle replication of H1N1pdm and H3N2 IAV but not SARS-CoV-2 and SARS-CoV was enhanced by flagellin treatment. Our data suggest that bacteria, particularly flagellated bacteria, up-regulate the expression of TMPRSS2 in human airway cells and, thereby, may support enhanced activation and replication of IAV upon co-infections. In addition, our data indicate a physiological role of TMPRSS2 in antimicrobial host response.


Asunto(s)
Serina Endopeptidasas , Humanos , Flagelina/farmacología , Virus de la Influenza A/fisiología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Lipopolisacáridos/farmacología , ARN Mensajero , SARS-CoV-2 , Serina Endopeptidasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA