Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Kidney Int ; 105(3): 562-581, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38142040

RESUMEN

The parathyroid gland is one of the main organs that regulate calcium and phosphorus metabolism. It is mainly composed of chief cells and oxyphil cells. Oxyphil cell counts are low in the parathyroid glands of healthy adults but are dramatically increased in patients with uremia and secondary hyperparathyroidism (SHPT). Increased oxyphil cell counts are related to drug treatment resistance, but the origin of oxyphil cells and the mechanism of proliferation remain unknown. Herein, three types of parathyroid nodules (chief cell nodules, oxyphil cell nodules and mixed nodules, respectively) excised from parathyroid glands of uremic SHPT patients were used for single-cell RNA sequencing (scRNA-seq), other molecular biology studies, and transplantation into nude mice. Through scRNA-seq of parathyroid mixed nodules from three patients with uremic SHPT, we established the first transcriptomic map of the human parathyroid and found a chief-to-oxyphil cell transdifferentiation characterized by gradual mitochondrial enrichment associated with the uremic milieu. Notably, the mitochondrial enrichment and cellular proliferation of chief cell and oxyphil cell nodules decreased significantly after leaving the uremic milieu via transplantation into nude mice. Remarkably, the phenotype of oxyphil cell nodules improved significantly in the nude mice as characterized by decreased mitochondrial content and the proportion of oxyphil cells to chief cells. Thus, our study provides a comprehensive single-cell transcriptome atlas of the human parathyroid and elucidates the origin of parathyroid oxyphil cells and their underlying transdifferentiating mechanism. These findings enhance our understanding of parathyroid disease and may open new treatment perspectives for patients with chronic kidney disease.


Asunto(s)
Hiperparatiroidismo Secundario , Glándulas Paratiroides , Adulto , Animales , Ratones , Humanos , Glándulas Paratiroides/metabolismo , Células Oxífilas , Ratones Desnudos , Transdiferenciación Celular , Hiperparatiroidismo Secundario/genética , Hiperparatiroidismo Secundario/terapia , Análisis de Secuencia de ARN
2.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200278, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38954781

RESUMEN

BACKGROUND AND OBJECTIVES: Neutrophils, underestimated in multiple sclerosis (MS), are gaining increased attention for their significant functions in patients with MS and the experimental autoimmune encephalomyelitis (EAE) animal model. However, the precise role of neutrophils in cervical lymph nodes (CLNs), the primary CNS-draining lymph nodes where the autoimmune response is initiated during the progression of EAE, remains poorly understood. METHODS: Applying single-cell RNA sequencing (scRNA-seq), we constructed a comprehensive immune cell atlas of CLNs during development of EAE. Through this atlas, we concentrated on and uncovered the transcriptional landscape, phenotypic and functional heterogeneity of neutrophils, and their crosstalk with immune cells within CLNs in the neuroinflammatory processes in EAE. RESULTS: Notably, we observed a substantial increase in the neutrophil population in EAE mice, with a particular emphasis on the significant rise within the CLNs. Neutrophils in CLNs were categorized into 3 subtypes, and we explored the specific roles and developmental trajectories of each distinct neutrophil subtype. Neutrophils were found to engage in extensive interactions with other immune cells, playing crucial roles in T-cell activation. Moreover, our findings highlighted the strong migratory ability of neutrophils to CLNs, partly regulated by triggering the receptor expressed on myeloid cells 1 (TREM-1). Inhibiting TREM1 with LR12 prevents neutrophil migration both in vivo and in vitro. In addition, in patients with MS, we confirmed an increase in peripheral neutrophils with an upregulation of TREM-1. DISCUSSION: Our research provides a comprehensive and precise single-cell atlas of CLNs in EAE, highlighting the role of neutrophils in regulating the periphery immune response. In addition, TREM-1 emerged as an essential regulator of neutrophil migration to CLNs, holding promise as a potential therapeutic target in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ratones Endogámicos C57BL , Neutrófilos , Análisis de la Célula Individual , Receptor Activador Expresado en Células Mieloides 1 , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/genética , Neutrófilos/metabolismo , Neutrófilos/inmunología , Animales , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Ratones , Femenino , Análisis de Secuencia de ARN , Ganglios Linfáticos/metabolismo
3.
Cell Rep ; 43(7): 114460, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996068

RESUMEN

Natural silks are renewable proteins with impressive mechanical properties and biocompatibility that are useful in various fields. However, the cellular and spatial organization of silk-secreting organs remains unclear. Here, we combined single-nucleus and spatially resolved transcriptomics to systematically map the cellular and spatial composition of the silk glands (SGs) of mulberry silkworms late in larval development. This approach allowed us to profile SG cell types and cell state dynamics and identify regulatory networks and cell-cell communication related to efficient silk protein synthesis; key markers were validated via transgenic approaches. Notably, we demonstrated the indispensable role of the ecdysone receptor (ultraspiracle) in regulating endoreplication in SG cells. Our atlas presents the results of spatiotemporal analysis of silk-secreting organ architecture late in larval development; this atlas provides a valuable reference for elucidating the mechanism of efficient silk protein synthesis and developing sustainable products made from natural silk.

4.
Inflamm Bowel Dis ; 29(6): 850-865, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36715181

RESUMEN

BACKGROUND: Creeping fat (CrF) has been recognized to play a positive role in Crohn's disease (CD) progression, yet the cellular compositions within mesenteric adipose tissue (MAT) and their potential mechanism in CrF formation are poorly understood. METHODS: Analysis of 10X single-cell RNA sequencing was performed on 67 064 cells from 3 pairs of surgically resected samples of CrF and their uninvolved MAT. The results were validated in another cohort with 6 paired MAT samples by immunofluorescence. RESULTS: All samples manifested excellent consistency and repeatability in our study, and 10 cell types from the transcriptome atlas, including 20 clusters, were identified. In CrF, a specific vascular endothelial cell subpopulation highly expressing lipoprotein lipase was first identified, with a significantly increased proportion. This vascular endothelial cell subpopulation manifested robust peroxisome proliferator-activated receptor γ (PPARγ) transcription activity and an upregulated PPAR signaling pathway and was involved in lipid metabolism and the antibacterial response. A novel fibroblast subpopulation (FC3) with remarkable GREM1 and RFLNB expression was identified and validated to predominantly accumulate in the CrF. The FC3 was annotated as inflammation-associated fibroblasts, which are characterized by inflammatory responses and the regulation of Smad phosphorylation related to intestinal fibrosis. The trajectory of fibroblasts revealed their pro-inflammatory and profibrotic conversion tendency during CrF formation with corresponding gene dynamics. Additionally, we unprecedently dissected the different origins and functions of 6 macrophage subclusters within the myeloid compartment. CONCLUSIONS: Our results uncover the cellular heterogeneity in the MAT of CD and the role of these various cellular compositions in CrF development. This comprehensive understanding of CrF provides future directions for in-depth research on and potential targets for MAT-based treatment.


This is the first study that provides a comprehensive single-cell transcriptomic atlas in mesenteric adipose tissue (MAT) of Crohn's disease and elaborates the functional diversity and dynamic changes of the cellular components during creeping fat (CrF) formation.


Asunto(s)
Enfermedad de Crohn , Humanos , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Intestinos , Tejido Adiposo/metabolismo , Inflamación/metabolismo
5.
Nat Commun ; 13(1): 3316, 2022 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-35680954

RESUMEN

The silk gland of the domesticated silkworm Bombyx mori, is a remarkable organ that produces vast amounts of silk with exceptional properties. Little is known about which silk gland cells execute silk protein synthesis and its precise spatiotemporal control. Here, we use single-cell RNA sequencing to build a comprehensive cell atlas of the silkworm silk gland, consisting of 14,972 high-quality cells representing 10 distinct cell types, in three early developmental stages. We annotate all 10 cell types and determine their distributions in each region of the silk gland. Additionally, we decode the developmental trajectory and gene expression status of silk gland cells. Finally, we discover marker genes involved in the regulation of silk gland development and silk protein synthesis. Altogether, this work reveals the heterogeneity of silkworm silk gland cells and their gene expression dynamics, affording a deeper understanding of silk-producing organs at the single-cell level.


Asunto(s)
Bombyx , Animales , Bombyx/metabolismo , Proteínas de Insectos/genética , Seda/metabolismo , Transcriptoma/genética , Secuenciación del Exoma
6.
Sci Bull (Beijing) ; 67(4): 408-426, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-36546093

RESUMEN

The distinct characteristics of γδ T cells determine their vital roles in the formation of local immune responses and contribute to tissue homeostasis. However, the heterogeneity of γδ T cells across tissues remains unclear. By combining transcriptional and chromatin analyses with a truly unbiased fashion, we constructed a single-cell transcriptome and chromatin accessibility landscape of mouse γδ T cells in the lymph, spleen, and thymus. We also revealed the heterogeneity of γδ T1 and γδ T17 cells across these tissues and inferred their potential regulatory mechanisms. In the thymus, we reconstructed the developmental trajectory and gained further insights into the signature genes from the mature stage, intermediate stage, and immature stage of γδ T cells on the basis of single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing data. Notably, a novel Gzma+ γδ T cell subset was identified with immature properties and only localized to the thymus. Finally, NR1D1, a circadian transcription factor (TF), was validated as a key and negative regulator of γδ T17 cell differentiation by performing a combined analysis of TF motif enrichment, regulon enrichment, and Nr1d1 knockout mice. In summary, our data represent a comprehensive mapping on the transcriptome and chromatin accessibility dynamics of mouse γδ T cells, providing a valuable resource and reference for future studies on γδ T cells.


Asunto(s)
Cromatina , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Diferenciación Celular/genética , Cromatina/genética , Regulación de la Expresión Génica , Factores de Transcripción/genética , Linfocitos Intraepiteliales/inmunología
7.
Front Microbiol ; 9: 1617, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30093887

RESUMEN

The occurrence of antibiotic resistance genes (ARGs) as emerging contaminants is of continued concern for human health. Antibiotics used in aquaculture have promoted the evolution and spread of ARGs. This study aimed to investigate the occurrence of 37 ARGs conferring resistance to six classes of antibiotics in 94 aquatic animals from five cities in southeast coast of China. The results showed that floR, sulII, sulI, strB, strA, aadA, and tetS were identified as the prominent ARGs with the high detection frequencies ranging from 30.9 to 51.1% in total samples. Then relative expression amount of seven prominent ARGs quantified by qPCR, ranging from 0.003 to 0.065. The tetS was the most abundant ARG among the seven ARGs. Though aadA was the second highest detection frequency of ARGs, it was the lowest expression amount ARG. The occurrences and abundances of ARGs in freshwater aquatic animals were greater than those in marine, reflecting the discrepancy of cultivation pattern between the freshwater and marine aquaculture. Shanghai was considered as the most prevalent site with 16 ARGs, and Ningbo merely contained 9 ARGs without of ß-lactam ARGs and quinolone ARGs, showing variations of ARGs with geographical location. Eight kinds of sulfonamides and one chloramphenicol residues were further measured in samples from Shanghai. Interestingly, no target antibiotics were found, but sulfonamides resistance genes (sulI, sulII) and chloramphenicol resistance genes (floR) persisted at aquatic animals in the absence of selection pressure. Our research firstly shows comprehensive information on the ARGs in skin microbiota of aquatic animals, which could provide useful information and a new insight for better understanding on the ARGs dissemination in aquatic animals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA