Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Transplant ; 23(8): 1171-1181, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37019335

RESUMEN

The blockade of the CD154-CD40 pathway with anti-CD154 monoclonal antibody has been a promising immunomodulatory approach to prevent allograft rejection. However, clinical trials of immunoglobulin G1 antibodies targeting this pathway revealed thrombogenic properties, which were subsequently shown to be mediated by crystallizable fragment (Fc)-gamma receptor IIa-dependent platelet activation. To prevent thromboembolic complications, an immunoglobulin G4 anti-CD154 monoclonal antibody, TNX-1500, which retains the fragment antigen binding region of ruplizumab (humanized 5c8, BG9588), was modified by protein engineering to decrease Fc binding to Fc-gamma receptor IIa while retaining certain other effector functions and pharmacokinetics comparable with natural antibodies. Here, we report that TNX-1500 treatment is not associated with platelet activation in vitro and consistently inhibits kidney allograft rejection in vivo without clinical or histologic evidence of prothrombotic phenomena. We conclude that TNX-1500 retains efficacy similar to that of 5c8 to prevent kidney allograft rejection while avoiding previously identified pathway-associated thromboembolic complications.


Asunto(s)
Trasplante de Riñón , Animales , Trasplante de Riñón/efectos adversos , Ligando de CD40 , Riñón , Anticuerpos Monoclonales/uso terapéutico , Antígenos CD40 , Inmunoglobulina G , Primates , Aloinjertos , Supervivencia de Injerto , Rechazo de Injerto/etiología , Rechazo de Injerto/prevención & control
2.
Biotechnol Bioeng ; 120(7): 1746-1761, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36987713

RESUMEN

Protein expression from stably transfected Chinese hamster ovary (CHO) clones is an established but time-consuming method for manufacturing therapeutic recombinant proteins. The use of faster, alternative approaches, such as non-clonal stable pools, has been restricted due to lower productivity and longstanding regulatory guidelines. Recently, the performance of stable pools has improved dramatically, making them a viable option for quickly producing drug substance for GLP-toxicology and early-phase clinical trials in scenarios such as pandemics that demand rapid production timelines. Compared to stable CHO clones which can take several months to generate and characterize, stable pool development can be completed in only a few weeks. Here, we compared the productivity and product quality of trimeric SARS-CoV-2 spike protein ectodomains produced from stable CHO pools or clones. Using a set of biophysical and biochemical assays we show that product quality is very similar and that CHO pools demonstrate sufficient productivity to generate vaccine candidates for early clinical trials. Based on these data, we propose that regulatory guidelines should be updated to permit production of early clinical trial material from CHO pools to enable more rapid and cost-effective clinical evaluation of potentially life-saving vaccines.


Asunto(s)
COVID-19 , SARS-CoV-2 , Cricetinae , Animales , Humanos , Cricetulus , SARS-CoV-2/metabolismo , Células CHO , Anticuerpos Monoclonales , Vacunas contra la COVID-19/genética , COVID-19/prevención & control , Proteínas Recombinantes/metabolismo , Vacunas de Subunidad/genética
3.
Biotechnol Bioeng ; 119(8): 2206-2220, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35509261

RESUMEN

Some effector functions prompted by immunoglobulin G (IgG) antibodies, such as antibody-dependent cell-mediated cytotoxicity (ADCC), strongly depend on the N-glycans linked to asparagine 297 of the Fc region of the protein. A single α-(1,6)-fucosyltransferase (FUT8) is responsible for catalyzing the addition of an α-1,6-linked fucose residue to the first GlcNAc residue of the N-linked glycans. Antibodies missing this core fucose show a significantly enhanced ADCC and increased antitumor activity, which could help reduce therapeutic dose requirement, potentially translating into reduced safety concerns and manufacturing costs. Several approaches have been developed to modify glycans and improve the biological functions of antibodies. Here, we demonstrate that expression of a membrane-associated anti-FUT8 intrabody engineered to reside in the endoplasmic reticulum and Golgi apparatus can efficiently reduce FUT8 activity and therefore the core-fucosylation of the Fc N-glycan of an antibody. IgG1-producing CHO cells expressing the intrabody secrete antibodies with reduced core fucosylation as demonstrated by lectin blot analysis and UPLC-HILIC glycan analysis. Cells engineered to inhibit directly and specifically alpha-(1,6)-fucosyltransferase activity allows for the production of g/L levels of IgGs with strongly enhanced ADCC effector function, for which the level of fucosylation can be selected. The quick and efficient method described here should have broad practical applicability for the development of next-generation therapeutic antibodies with enhanced effector functions.


Asunto(s)
Fucosa , Fucosiltransferasas , Animales , Anticuerpos Monoclonales/química , Células CHO , Cricetinae , Cricetulus , Fucosa/metabolismo , Fucosiltransferasas/genética , Inmunoglobulina G/química , Polisacáridos
4.
Biotechnol Bioeng ; 118(1): 423-432, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32970320

RESUMEN

Vascular leak is a key driver of organ injury in diseases, and strategies that reduce enhanced permeability and vascular inflammation are promising therapeutic targets. Activation of the angiopoietin-1 (ANG1)-Tie2 tyrosine kinase signaling pathway is an important regulator of vascular quiescence. Here we describe the design and construction of a new soluble ANG1 mimetic that is a potent activator of endothelial Tie2 in vitro and in vivo. Using a chimeric fusion strategy, we replaced the extracellular matrix (ECM) binding and oligomerization domain of ANG1 with a heptameric scaffold derived from the C-terminus of serum complement protein C4-binding protein α. We refer to this new fusion protein biologic as Hepta-ANG1, which forms a stable heptamer and induces Tie2 phosphorylation in cultured cells, and in the lung following intravenous injection of mice. Injection of Hepta-ANG1 ameliorates vascular endothelial growth factor- and lipopolysaccharide-induced vascular leakage, in keeping with the known functions of Angpt1-Tie2 in maintaining quiescent vascular stability. The new Hepta-ANG1 fusion is easy to produce and displays remarkable stability with high multimericity that can potently activate Tie2. It could be a new candidate ANG1 mimetic therapy for treatments of inflammatory vascular leak, such as acute respiratory distress syndrome and sepsis.


Asunto(s)
Angiopoyetina 1 , Proteína de Unión al Complemento C4b , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Proteínas Recombinantes de Fusión , Enfermedades Vasculares/tratamiento farmacológico , Angiopoyetina 1/biosíntesis , Angiopoyetina 1/genética , Angiopoyetina 1/farmacología , Animales , Proteína de Unión al Complemento C4b/biosíntesis , Proteína de Unión al Complemento C4b/genética , Proteína de Unión al Complemento C4b/farmacología , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Dominios Proteicos , Conejos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/farmacología , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Sepsis/tratamiento farmacológico , Sepsis/metabolismo , Sepsis/patología , Enfermedades Vasculares/metabolismo , Enfermedades Vasculares/patología
5.
Biochemistry ; 55(49): 6880-6896, 2016 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-27951653

RESUMEN

Transforming growth factor (TGF) ß1, ß2, and ß3 (TGF-ß1-TGF-ß3, respectively) are small secreted signaling proteins that each signal through the TGF-ß type I and type II receptors (TßRI and TßRII, respectively). However, TGF-ß2, which is well-known to bind TßRII several hundred-fold more weakly than TGF-ß1 and TGF-ß3, has an additional requirement for betaglycan, a membrane-anchored nonsignaling receptor. Betaglycan has two domains that bind TGF-ß2 at independent sites, but how it binds TGF-ß2 to potentiate TßRII binding and how the complex with TGF-ß, TßRII, and betaglycan undergoes the transition to the signaling complex with TGF-ß, TßRII, and TßRI are not understood. To investigate the mechanism, the binding of the TGF-ßs to the betaglycan extracellular domain, as well as its two independent binding domains, either directly or in combination with the TßRI and TßRII ectodomains, was studied using surface plasmon resonance, isothermal titration calorimetry, and size-exclusion chromatography. These studies show that betaglycan binds TGF-ß homodimers with a 1:1 stoichiometry in a manner that allows one molecule of TßRII to bind. These studies further show that betaglycan modestly potentiates the binding of TßRII and must be displaced to allow TßRI to bind. These findings suggest that betaglycan functions to bind and concentrate TGF-ß2 on the cell surface and thus promote the binding of TßRII by both membrane-localization effects and allostery. These studies further suggest that the transition to the signaling complex is mediated by the recruitment of TßRI, which simultaneously displaces betaglycan and stabilizes the bound TßRII by direct receptor-receptor contact.


Asunto(s)
Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Animales , Sitios de Unión , Células CHO , Calorimetría , Cricetinae , Cricetulus , Resonancia por Plasmón de Superficie
6.
Methods Mol Biol ; 2762: 71-87, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315360

RESUMEN

Surface plasmon resonance (SPR) allows for the label-free determination of the binding affinity and rate constants of bimolecular interactions. Here, we describe the method used for the analysis of the Ace2-SARS-CoV2 S-protein interaction using indirect capture of the S-protein onto the SPR surface, and flowing monomeric Ace2. This method will allow for the determination of the rate constants for affinity, with additional analysis that is achievable using S-protein capture levels in conjunction with the sensorgram response for relative activity benchmarking.


Asunto(s)
COVID-19 , Resonancia por Plasmón de Superficie , Humanos , Resonancia por Plasmón de Superficie/métodos , SARS-CoV-2/metabolismo , ARN Viral/metabolismo , Unión Proteica , Glicoproteína de la Espiga del Coronavirus/metabolismo
7.
Front Mol Biosci ; 10: 1253689, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692063

RESUMEN

Accurate protein-protein docking remains challenging, especially for artificial biologics not coevolved naturally against their protein targets, like antibodies and other engineered scaffolds. We previously developed ProPOSE, an exhaustive docker with full atomistic details, which delivers cutting-edge performance by allowing side-chain rearrangements upon docking. However, extensive protein backbone flexibility limits its practical applicability as indicated by unbound docking tests. To explore the usefulness of ProPOSE on systems with limited backbone flexibility, here we tested the engineered scaffold DARPin, which is characterized by its relatively rigid protein backbone. A prospective screening campaign was undertaken, in which sequence-diversified DARPins were docked and ranked against a directed epitope on the target protein BCL-W. In this proof-of-concept study, only a relatively small set of 2,213 diverse DARPin interfaces were selected for docking from the huge theoretical library from mutating 18 amino-acid positions. A computational selection protocol was then applied for enrichment of binders based on normalized computed binding scores and frequency of binding modes against the predefined epitope. The top-ranked 18 designed DARPin interfaces were selected for experimental validation. Three designs exhibited binding affinities to BCL-W in the nanomolar range comparable to control interfaces adopted from known DARPin binders. This result is encouraging for future screening and engineering campaigns of DARPins and possibly other similarly rigid scaffolds against targeted protein epitopes. Method limitations are discussed and directions for future refinements are proposed.

8.
Front Immunol ; 14: 1182556, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122746

RESUMEN

Liposomes composed of sulfated lactosyl archaeol (SLA) have been shown to be a safe and effective vaccine adjuvant with a multitude of antigens in preclinical studies. In particular, SLA-adjuvanted SARS-CoV-2 subunit vaccines based on trimeric spike protein antigens were shown to be immunogenic and efficacious in mice and hamsters. With the continued emergence of SARS-CoV-2 variants, we sought to evaluate next-generation vaccine formulations with an updated antigenic identity. This was of particular interest for the widespread Omicron variant, given the abundance of mutations and structural changes observed within its spike protein compared to other variants. An updated version of our resistin-trimerized SmT1 corresponding to the B.1.1.529 variant was successfully generated in our Chinese Hamster Ovary (CHO) cell-based antigen production platform and characterized, revealing some differences in protein profile and ACE2 binding affinity as compared to reference strain-based SmT1. We next evaluated this Omicron-based spike antigen for its immunogenicity and ability to generate robust antigen-specific immune responses when paired with SLA liposomes or AddaS03 (a mimetic of the AS03 oil-in-water emulsion adjuvant system found in commercialized SARS-CoV-2 protein vaccines). Immunization of mice with vaccine formulations containing this updated antigen with either adjuvant stimulated neutralizing antibody responses favouring Omicron over the reference strain. Cell-mediated responses, which play an important role in the neutralization of intracellular infections, were induced to a much higher degree with the SLA adjuvant relative to the AddaS03-adjuvanted formulations. As such, updated vaccines that are better capable of targeting towards SARS-CoV-2 variants can be generated through an optimized combination of antigen and adjuvant components.


Asunto(s)
Adyuvantes de Vacunas , COVID-19 , Cricetinae , Animales , Ratones , SARS-CoV-2 , Glucolípidos , Sulfatos , Células CHO , Liposomas , Glicoproteína de la Espiga del Coronavirus/genética , COVID-19/prevención & control , Cricetulus , Inmunidad Celular , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Archaea , Vacunas contra la COVID-19
9.
Nat Commun ; 14(1): 1394, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914633

RESUMEN

Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Neoplasias de la Mama , Humanos , Femenino , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Receptor ErbB-2/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico
11.
J Biol Chem ; 286(28): 25098-107, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21613222

RESUMEN

Mcl-1, a pro-survival member of the Bcl-2 family located at the mitochondrial outer membrane, is subject to constitutive ubiquitylation by the Bcl-2 homology 3-only E3 ligase, Mule/Lasu1, resulting in rapid steady-state degradation via the proteasome. Insertion of newly synthesized Mcl-1 into the mitochondrial outer membrane is dependent on its C-terminal transmembrane segment, but once inserted, the N terminus of a portion of the Mcl-1 molecules can be subject to proteolytic processing. Remarkably, this processing requires an intact electrochemical potential across the inner membrane. Three lines of evidence directed at the endogenous protein, however, indicate that the resulting Mcl-1ΔN isoform resides in the outer membrane: (i) full-length Mcl-1 and Mcl-1ΔN resist extraction by alkali but are accessible to exogenous protease; (ii) almost the entire populations of Mcl-1 and Mcl-1ΔN are accessible to the membrane-impermeant Cys-reactive agent 4-acetamido-4'-[(iodoacetyl)amino]stilbene-2,2'-disulfonic acid; and (iii) Mcl-1 and Mcl-1ΔN exhibit equivalent chemical cross-linking to Bak in intact mitochondria, an Mcl-1 binding partner located in the outer membrane. In addition to the Mule Bcl-2 homology 3 domain, we show that interaction between Mcl-1 and Mule also requires the extreme N terminus of Mcl-1, which is lacking in Mcl-1ΔN. Thus, Mcl-1ΔN does not interact with Mule, exhibits reduced steady-state ubiquitylation, evades the hyper-rapid steady-state degradation that is observed for full-length Mcl-1 in response to treatments that limit global protein synthesis, and confers resistance to UV stress-induced cell death.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Sitios de Unión , Muerte Celular/fisiología , Muerte Celular/efectos de la radiación , Células HeLa , Humanos , Ratones , Ratones Noqueados , Mitocondrias/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Células 3T3 NIH , Biosíntesis de Proteínas/fisiología , Biosíntesis de Proteínas/efectos de la radiación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Supresoras de Tumor , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación/fisiología , Ubiquitinación/efectos de la radiación , Rayos Ultravioleta
12.
PLoS One ; 17(3): e0266250, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35353868

RESUMEN

The SARS coronavirus 2 (SARS-CoV-2) spike (S) protein binding to the human ACE2 receptor is the molecular event that initiates viral entry into host cells and leads to infection and virus replication. There is a need for agents blocking viral entry into host cells that are cross-reactive with emerging virus variants. VHH-72 is an anti-SARS-CoV-1 single-domain antibody that also exhibits cross-specificity with SARS-CoV-2 but with decreased binding affinity. Here we applied a structure-based approach to affinity-mature VHH-72 for the SARS-CoV-2 spike protein while retaining the original affinity for SARS-CoV-1. This was achieved by employing the computational platform ADAPT in a constrained dual-affinity optimization mode as a means of broadening specificity. Select mutants designed by ADAPT were formatted as fusions with a human IgG1-Fc fragment. These mutants demonstrated improved binding to the SARS-CoV-2 spike protein due to decreased dissociation rates. Functional testing for virus neutralization revealed improvements relative to the parental VHH72-Fc up to 10-fold using a SARS-CoV-2 pseudotyped lentivirus and 20-fold against the SARS-CoV-2 authentic live virus (Wuhan variant). Binding and neutralization improvements were maintained for some other SARS-CoV-2 variants currently in circulation. These improved VHH-72 mutants are predicted to establish novel interactions with the S antigen. They will be useful, alone or as fusions with other functional modules, in the global quest for treatments of COVID-19 infections.


Asunto(s)
COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Anticuerpos de Dominio Único , Anticuerpos Antivirales , Humanos , Unión Proteica , SARS-CoV-2/genética , Anticuerpos de Dominio Único/metabolismo , Glicoproteína de la Espiga del Coronavirus
13.
Biochem Biophys Res Commun ; 404(4): 1093-8, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21195693

RESUMEN

The lipopolysaccharide transport system (Lpt) in Gram-negative bacteria is responsible for transporting lipopolysaccharide (LPS) from the cytoplasmic surface of the inner membrane, where it is assembled, across the inner membrane, periplasm and outer membrane, to the surface where it is then inserted in the outer leaflet of the asymmetric lipid bilayer. The Lpt system consists of seven known LPS transport proteins (LptA-G) spanning from the cytoplasm to the cell surface. We have shown that the periplasmic component, LptA is able to form a stable complex with the inner membrane anchored LptC but does not interact with the outer membrane anchored LptE. This suggests that the LptC component of the LptBFGC complex may act as a dock for LptA, allowing it to bind LPS after it has been assembled at the inner membrane. That no interaction between LptA and LptE has been observed supports the theory that LptA binds LptD in the LptDE homodimeric complex at the outer membrane.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/metabolismo , Periplasma/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Transporte Biológico , Proteínas Portadoras/genética , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/genética , Modelos Biológicos , Multimerización de Proteína
14.
Sci Rep ; 11(1): 21362, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34725391

RESUMEN

The design of superior biologic therapeutics, including antibodies and engineered proteins, involves optimizing their specific ability to bind to disease-related molecular targets. Previously, we developed and applied the Assisted Design of Antibody and Protein Therapeutics (ADAPT) platform for virtual affinity maturation of antibodies (Vivcharuk et al. in PLoS One 12(7):e0181490, https://doi.org/10.1371/journal.pone.0181490 , 2017). However, ADAPT is limited to point mutations of hot-spot residues in existing CDR loops. In this study, we explore the possibility of wholesale replacement of the entire H3 loop with no restriction to maintain the parental loop length. This complements other currently published studies that sample replacements for the CDR loops L1, L2, L3, H1 and H2. Given the immense sequence space theoretically available to H3, we focused on the virtual grafting of over 5000 human germline-derived H3 sequences from the IGMT/LIGM database increasing the diversity of the sequence space when compared to using crystalized H3 loop sequences. H3 loop conformations are generated and scored to identify optimized H3 sequences. Experimental testing of high-ranking H3 sequences grafted into the framework of the bH1 antibody against human VEGF-A led to the discovery of multiple hits, some of which had similar or better affinities relative to the parental antibody. In over 75% of the tested designs, the re-designed H3 loop contributed favorably to overall binding affinity. The hits also demonstrated good developability attributes such as high thermal stability and no aggregation. Crystal structures of select re-designed H3 variants were solved and indicated that although some deviations from predicted structures were seen in the more solvent accessible regions of the H3 loop, they did not significantly affect predicted affinity scores.


Asunto(s)
Anticuerpos/química , Secuencia de Aminoácidos , Anticuerpos/inmunología , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/inmunología , Humanos , Modelos Moleculares , Agregado de Proteínas , Conformación Proteica , Estabilidad Proteica , Factor A de Crecimiento Endotelial Vascular/inmunología
15.
MAbs ; 13(1): 1997072, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34812124

RESUMEN

Human carbonic anhydrase (hCAIX), an extracellular enzyme that catalyzes the reversible hydration of CO2, is often overexpressed in solid tumors. This enzyme is instrumental in maintaining the survival of cancer cells in a hypoxic and acidic tumor microenvironment. Absent in most normal tissues, hCAIX is a promising therapeutic target for detection and treatment of solid tumors. Screening of a library of anti-hCAIX monoclonal antibodies (mAbs) previously identified three therapeutic candidates (mAb c2C7, m4A2 and m9B6) with distinct biophysical and functional characteristics. Selective binding to the catalytic domain was confirmed by yeast surface display and isothermal calorimetry, and deeper insight into the dynamic binding profiles of these mAbs upon binding were highlighted by bottom-up hydrogen-deuterium exchange mass spectrometry (HDX-MS). Here, a conformational and allosterically silent epitope was identified for the antibody-drug conjugate candidate c2C7. Unique binding profiles are described for both inhibitory antibodies, m4A2 and m9B6. M4A2 reduces the ability of the enzyme to hydrate CO2 by steric gating at the entrance of the catalytic cavity. Conversely, m9B6 disrupts the secondary structure that is necessary for substrate binding and hydration. The synergy of these two inhibitory mechanisms is demonstrated in in vitro activity assays and HDX-MS. Finally, the ability of m4A2 to modulate extracellular pH and intracellular metabolism is reported. By highlighting three unique modes by which hCAIX can be targeted, this study demonstrates both the utility of HDX-MS as an important tool in the characterization of anti-cancer biotherapeutics, and the underlying value of CAIX as a therapeutic target.


Asunto(s)
Medición de Intercambio de Deuterio , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Anticuerpos Monoclonales/química , Dominio Catalítico , Deuterio/química , Medición de Intercambio de Deuterio/métodos , Mapeo Epitopo/métodos , Humanos
16.
MAbs ; 13(1): 1999194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34806527

RESUMEN

The architectural complexity and heterogeneity of the tumor microenvironment (TME) remains a substantial obstacle in the successful treatment of cancer. Hypoxia, caused by insufficient oxygen supply, and acidosis, resulting from the expulsion of acidic metabolites, are prominent features of the TME. To mitigate the consequences of the hostile TME, cancer cells metabolically rewire themselves and express a series of specific transporters and enzymes instrumental to this adaptation. One of these proteins is carbonic anhydrase (CA)IX, a zinc-containing extracellular membrane bound enzyme that has been shown to play a critical role in the maintenance of a neutral intracellular pH (pHi), allowing tumor cells to survive and thrive in these harsh conditions. Although CAIX has been considered a promising cancer target, only two antibody-based therapeutics have been clinically tested so far. To fill this gap, we generated a series of novel monoclonal antibodies (mAbs) that specifically recognize the extracellular domain (ECD) of human CAIX. Here we describe the biophysical and functional properties of a set of antibodies against the CAIX ECD domain and their applicability as: 1) suitable for development as an antibody-drug-conjugate, 2) an inhibitor of CAIX enzyme activity, or 3) an imaging/detection antibody. The results presented here demonstrate the potential of these specific hCAIX mAbs for further development as novel cancer therapeutic and/or diagnostic tools.


Asunto(s)
Antineoplásicos Inmunológicos , Anhidrasas Carbónicas , Anticuerpos Monoclonales/farmacología , Antígenos de Neoplasias , Biomarcadores de Tumor , Anhidrasas Carbónicas/química , Anhidrasas Carbónicas/metabolismo , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno
17.
MAbs ; 12(1): 1802188, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32816577

RESUMEN

As biologics have become a mainstay in the development of novel therapies, protein engineering tools to expand on their structural advantages, namely specificity, affinity, and valency are of interest. Antibodies have dominated this field as the preferred scaffold for biologics development while there has been limited exploration into the use of albumin with its unique physiological characteristics as a platform for biologics design. There has been a great deal of interest to create bispecific and more complex multivalent molecules to build on the advantages offered by protein-based therapeutics relative to small molecules. Here, we explore the use of human serum albumin (HSA) as a scaffold for the design of multispecific biologics. In particular, we describe a structure-guided approach to the design of split HSA molecules we refer to as AlbuCORE, that effectively and spontaneously forms a native albumin-like molecule, but in a heterodimeric state upon co-expression. We show that the split AlbuCORE designs allow the creation of novel fusion entities with unique alternate geometries. We also show that, apart from these AlbuCORE fusion entities, there is an opportunity to explore their albumin-like small hydrophobic molecule carrying capacity as a drug conjugate in these designs.


Asunto(s)
Ingeniería de Proteínas , Multimerización de Proteína , Albúmina Sérica Humana/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Albúmina Sérica Humana/genética
18.
MAbs ; 12(1): 1682866, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31777319

RESUMEN

Recent development of monoclonal antibodies as mainstream anticancer agents demands further optimization of their safety for use in humans. Potent targeting and/or effector activities on normal tissues is an obvious toxicity concern. Optimization of specific tumor targeting could be achieved by taking advantage of the extracellular acidity of solid tumors relative to normal tissues. Here, we applied a structure-based computational approach to engineer anti-human epidermal growth factor receptor 2 (Her2) antibodies with selective binding in the acidic tumor microenvironment. We used an affinity maturation platform in which dual-pH histidine-scanning mutagenesis was implemented for pH selectivity optimization. Testing of a small set of designs for binding to the recombinant Her2 ectodomain led to the identification of antigen-binding fragment (Fab) variants with the desired pH-dependent binding behavior. Binding selectivity toward acidic pH was improved by as much as 25-fold relative to the parental bH1-Fab. In vitro experiments on cells expressing intact Her2 confirmed that designed variants formatted as IgG1/k full-size antibodies have high affinity and inhibit the growth of tumor spheroids at a level comparable to that of the benchmark anti-Her2 antibody trastuzumab (Herceptin®) at acidic pH, whereas these effects were significantly reduced at physiological pH. In contrast, both Herceptin and the parental bH1 antibody exhibited strong cell binding and growth inhibition irrespective of pH. This work demonstrates the feasibility of computational optimization of antibodies for selective targeting of the acidic environment such as that found in many solid tumors.


Asunto(s)
Antineoplásicos Inmunológicos/química , Inmunoterapia/métodos , Neoplasias/terapia , Afinidad de Anticuerpos/genética , Antineoplásicos Inmunológicos/uso terapéutico , Línea Celular Tumoral , Histidina/genética , Humanos , Concentración de Iones de Hidrógeno , Mutagénesis Sitio-Dirigida , Neoplasias/inmunología , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Receptor ErbB-2/inmunología , Trastuzumab/uso terapéutico , Microambiente Tumoral
19.
Biochemistry ; 48(10): 2146-55, 2009 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-19161338

RESUMEN

The TGF-beta isoforms, TGF-beta1, -beta2, and -beta3, share greater than 70% sequence identity and are almost structurally identical. TGF-beta2 differs from the others, however, in that it binds the TGF-beta type II receptor (TbetaR-II) with much lower affinity than either TGF-beta1 or -beta3. It has been previously shown that three conserved interfacial residues, Arg25, Val92, Arg94, in TGF-beta1 and -beta3 are responsible for their high-affinity interaction with TbetaR-II. In this study, the role of each of these residues was examined by creating single, double, and triple substitutions resulting in both TGF-beta3 loss-of-function and TGF-beta2 gain-of-function variants. One-dimensional 1H NMR spectra of the variants confirmed a lack of large structural perturbations. Affinities, kinetics, and thermodynamics for TbetaR-II binding were determined by surface plasmon resonance biosensor analysis. Double substitutions revealed that nearly all of the high-affinity binding is contributed by Arg25 and Arg94. Single site substitutions showed that Arg94 makes the greatest contribution. Substitution of Arg25 and Arg94 with alanine verified the requirement of the arginine guanidinium functional groups for the highly specific hydrogen-bonded ion pairs formed between Arg25 and Arg94 of TGF-beta1 and -beta3, and Glu119 and Asp32 of TbetaR-II. Further kinetic and thermodynamic analyses confirmed that Arg25 and Arg94 are primarily responsible for high-affinity binding and also revealed that noninterfacial longer range effects emanating from the TGF-beta structural framework contribute slightly to TbetaR-II binding. Growth inhibition assays showed that binding changes generally correlate directly with changes in function; however, a role Val92 in this cellular context was uncovered.


Asunto(s)
Proteínas Serina-Treonina Quinasas/química , Receptores de Factores de Crecimiento Transformadores beta/química , Factor de Crecimiento Transformador beta/química , Sustitución de Aminoácidos/fisiología , Animales , Arginina/química , Arginina/genética , Bovinos , Proliferación Celular/efectos de los fármacos , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Humanos , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Unión Proteica/fisiología , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/genética , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie , Temperatura , Termodinámica , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta1/química , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta2/química , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta2/farmacología , Factor de Crecimiento Transformador beta3/química , Factor de Crecimiento Transformador beta3/genética , Factor de Crecimiento Transformador beta3/metabolismo , Factor de Crecimiento Transformador beta3/farmacología
20.
Protein Expr Purif ; 64(2): 108-17, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19061959

RESUMEN

Heterodimerizing peptides, such as the de novo designed E5/K5 peptide pair, have several applications including as tags for protein purification or immobilization. Recently, we demonstrated that E5-tagged epidermal growth factor (EGF), when bound to a K4 expressing adenovirus, promotes retargeting of the adenovirus to EGFR expressing target cells. In this study, we present the Escherichia coli expression, refolding and purification of human EGF fused with the E5-coil (E5-coil-EGF) or with the K5-coil (K5-coil-EGF). EGF receptor phosphorylation and cell proliferation assays demonstrated that the biological activity of the coil-tagged EGF versions was comparable to that of non-tagged EGF. Additionally, analysis of the binding of E5/K5-coil-EGF to cell surface EGFR or to soluble EGFR ectodomain, as measured by cell-based binding competition assays and by SPR-based biosensor experiments, indicated that the coil-tagged EGF versions bound to EGFR with affinities similar to that of non-tagged EGF. Finally, we show that E-coil-tagged EGF, but not non-tagged EGF, can retarget a K-coil containing adenovirus to EGF receptor expressing glioblastoma tumor cells. Overall these results indicate that E. coli expression offers a practical platform for the reproducible production of fully biologically active E5/K5-coil-tagged EGF, and support applications of heterodimerizing coil-tagged ligands, e.g. the targeting of viruses or other entities such as nanoparticles to tumor cells, or growth factor immobilization on cell culture scaffolds for tissue engineering.


Asunto(s)
Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Escherichia coli/genética , Péptidos/química , Línea Celular Tumoral , Células Cultivadas , Dimerización , Receptores ErbB/genética , Receptores ErbB/metabolismo , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cuerpos de Inclusión/metabolismo , Péptidos/genética , Péptidos/metabolismo , Fosforilación , Pliegue de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie , Ingeniería de Tejidos , Tirosina/química , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA