Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Methods ; 21(3): 406-410, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38253843

RESUMEN

The discovery of the bioluminescence pathway in the fungus Neonothopanus nambi enabled engineering of eukaryotes with self-sustained luminescence. However, the brightness of luminescence in heterologous hosts was limited by performance of the native fungal enzymes. Here we report optimized versions of the pathway that enhance bioluminescence by one to two orders of magnitude in plant, fungal and mammalian hosts, and enable longitudinal video-rate imaging.


Asunto(s)
Eucariontes , Luminiscencia , Animales , Mamíferos
2.
Bioinformatics ; 39(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982752

RESUMEN

MOTIVATION: The Oxford Nanopore technology has a great potential for the analysis of methylated motifs in genomes, including whole-genome methylome profiling. However, we found that there are no methylation motifs detection algorithms, which would be sensitive enough and return deterministic results. Thus, the MEME suit does not extract all Helicobacter pylori methylation sites de novo even using the iterative approach implemented in the most up-to-date methylation analysis tool Nanodisco. RESULTS: We present Snapper, a new highly sensitive approach, to extract methylation motif sequences based on a greedy motif selection algorithm. Snapper does not require manual control during the enrichment process and has enrichment sensitivity higher than MEME coupled with Tombo or Nanodisco instruments that was demonstrated on H.pylori strain J99 studied earlier by the PacBio technology and on four external datasets representing different bacterial species. We used Snapper to characterize the total methylome of a new H.pylori strain A45. At least four methylation sites that have not been described for H.pylori earlier were revealed. We experimentally confirmed the presence of a new CCAG-specific methyltransferase and inferred a gene encoding a new CCAAK-specific methyltransferase. AVAILABILITY AND IMPLEMENTATION: Snapper is implemented using Python and is freely available as a pip package named "snapper-ont." Also, Snapper and the demo dataset are available in Zenodo (10.5281/zenodo.10117651).


Asunto(s)
Genoma Bacteriano , Nanoporos , Metilación de ADN , Metiltransferasas/genética , Metiltransferasas/metabolismo , Algoritmos , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento
3.
Arch Microbiol ; 205(5): 214, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37129715

RESUMEN

Bacteriophages are often considered as possible agents of biological control of unwanted bacterial populations in medicine, agriculture and food industry. Although the virulent phages can efficiently kill the infected host cells but at the population level phage attack not always leads to the host population collapse but may result in establishment of a more or less stable co-existence. The mechanism of the long-term stabilization of the mixed phage-host cultures is poorly understood. Here we describe bacteriophages VyarbaL and Hena2, the members of the Molineuxvirinae and the Ounavirinae subfamilies, respectively, that are able to form the pseudolysogenic associations (PA) with their host Erwinia amylovora 1/79Sm on solid media. These PAs were stable through multiple passages. The phenomenon of the PA formation between a bacterial culture and bacteriophages decreases the effectiveness of bacteriophage-mediated biological control agents based on lytic bacteriophages.


Asunto(s)
Bacteriófagos , Erwinia amylovora , Humanos , Myoviridae , Bacterias , Enfermedades de las Plantas/microbiología
4.
Arch Virol ; 167(12): 2633-2642, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36207555

RESUMEN

The complete genomes of the new Erwinia amylovora bacteriophages Loshitsa2 and Micant are 43,092 bp and 43,028 bp long, respectively, encode 51 putative proteins, and have two tRNA genes. Comparative analysis with representatives of the class Caudoviricetes suggests that bacteriophages Loshitsa2 and Micant are related to LIMElight bacteriophage belonging to the family Autographiviridae and could be proposed to be members of a novel subfamily.


Asunto(s)
Bacteriófagos , Erwinia amylovora , Erwinia amylovora/genética , Bacteriófagos/genética , Enfermedades de las Plantas
5.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35163108

RESUMEN

The biodiversity of microorganisms is maintained by intricate nets of interactions between competing species. Impaired functionality of human microbiomes correlates with their reduced biodiversity originating from aseptic environmental conditions and antibiotic use. Microbiomes of wild animals are free of these selective pressures. Microbiota provides a protecting shield from invasion by pathogens in the wild, outcompeting their growth in specific ecological niches. We applied ultrahigh-throughput microfluidic technologies for functional profiling of microbiomes of wild animals, including the skin beetle, Siberian lynx, common raccoon dog, and East Siberian brown bear. Single-cell screening of the most efficient killers of the common human pathogen Staphylococcus aureus resulted in repeated isolation of Bacillus pumilus strains. While isolated strains had different phenotypes, all of them displayed a similar set of biosynthetic gene clusters (BGCs) encoding antibiotic amicoumacin, siderophore bacillibactin, and putative analogs of antimicrobials including bacilysin, surfactin, desferrioxamine, and class IId cyclical bacteriocin. Amicoumacin A (Ami) was identified as a major antibacterial metabolite of these strains mediating their antagonistic activity. Genome mining indicates that Ami BGCs with this architecture subdivide into three distinct families, characteristic of the B. pumilus, B. subtilis, and Paenibacillus species. While Ami itself displays mediocre activity against the majority of Gram-negative bacteria, isolated B. pumilus strains efficiently inhibit the growth of both Gram-positive S. aureus and Gram-negative E. coli in coculture. We believe that the expanded antagonistic activity spectrum of Ami-producing B. pumilus can be attributed to the metabolomic profile predetermined by their biosynthetic fingerprint. Ultrahigh-throughput isolation of natural probiotic strains from wild animal microbiomes, as well as their metabolic reprogramming, opens up a new avenue for pathogen control and microbiome remodeling in the food industry, agriculture, and healthcare.


Asunto(s)
Animales Salvajes/microbiología , Antibacterianos/administración & dosificación , Bacillus pumilus/química , Escherichia coli/crecimiento & desarrollo , Microbiota , Probióticos/administración & dosificación , Staphylococcus aureus/crecimiento & desarrollo , Animales , Antibacterianos/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Escherichia coli/efectos de los fármacos , Genoma Bacteriano , Metaboloma , Familia de Multigenes , Probióticos/aislamiento & purificación , Staphylococcus aureus/efectos de los fármacos
6.
Biochemistry (Mosc) ; 86(3): 257-261, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33838638

RESUMEN

The imbalance of the renin-angiotensin system is currently considered as a potentially important factor of the pathogenesis of COVID-19 disease. It has been shown previously in the murine model, that the expression of angiotensin-converting enzyme 2 (ACE2) on the cell surface is downregulated in response to the infection by SARS-CoV virus or recombinant spike protein (S protein) alone. In the case of natural infection, circulation of the S protein in a soluble form is unlikely. However, in SARS-CoV-2, a large fraction of S protein trimers is pre-processed during virion morphogenesis due to the presence of furin protease cleavage site between the S1 and S2 subunits. Therefore, S protein transition into the fusion conformation may be accompanied by the separation of the S1 subunits carrying the receptor-binding domains from the membrane-bound S2 subunits. The fate of the S1 particles shed due to the spontaneous "firing" of some S protein trimers exposed on the virions and on the surface of infected cells has been never investigated. We hypothesize that the soluble S1 subunits of the SARS-CoV-2 S protein shed from the infected cells and from the virions in vivo may bind to the ACE2 and downregulate cell surface expression of this protein. The decrease in the ACE2 activity on the background of constant or increased ACE activity in the lungs may lead to the prevalence of angiotensin II effects over those of angiotensin (1-7), thus promoting thrombosis, inflammation, and pulmonary damage. This hypothesis also suggests the association between less pronounced shedding of the S1 particles reported for the S protein carrying the D614G mutation (vs. the wild type D614 protein), and lack of increased severity of the COVID-19 infection caused by the mutant (D614G) SARS-CoV-2 strain, despite its higher infectivity and higher in vivo viral load.


Asunto(s)
COVID-19/virología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/inmunología , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/metabolismo , COVID-19/patología , Humanos , Ratones , Modelos Moleculares , Mutación , Multimerización de Proteína , Subunidades de Proteína , Sistema Renina-Angiotensina , SARS-CoV-2/genética , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/genética
8.
BMC Genomics ; 21(1): 331, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32349672

RESUMEN

BACKGROUND: Salivary cell secretion (SCS) plays a critical role in blood feeding by medicinal leeches, making them of use for certain medical purposes even today. RESULTS: We annotated the Hirudo medicinalis genome and performed RNA-seq on salivary cells isolated from three closely related leech species, H. medicinalis, Hirudo orientalis, and Hirudo verbana. Differential expression analysis verified by proteomics identified salivary cell-specific gene expression, many of which encode previously unknown salivary components. However, the genes encoding known anticoagulants have been found to be expressed not only in salivary cells. The function-related analysis of the unique salivary cell genes enabled an update of the concept of interactions between salivary proteins and components of haemostasis. CONCLUSIONS: Here we report a genome draft of Hirudo medicinalis and describe identification of novel salivary proteins and new homologs of genes encoding known anticoagulants in transcriptomes of three medicinal leech species. Our data provide new insights in genetics of blood-feeding lifestyle in leeches.


Asunto(s)
Genoma , Hirudo medicinalis/genética , Proteínas y Péptidos Salivales/genética , Animales , Anticoagulantes/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Hirudo medicinalis/metabolismo , Sanguijuelas/clasificación , Sanguijuelas/genética , Sanguijuelas/metabolismo , Proteómica , Saliva/metabolismo , Proteínas y Péptidos Salivales/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(10): 2550-2555, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28202731

RESUMEN

Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity.


Asunto(s)
Butirilcolinesterasa/química , Ensayos Analíticos de Alto Rendimiento/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Paraoxon/química , Análisis de la Célula Individual/instrumentación , Antibiosis , Biodiversidad , Comunicación Celular , Emulsiones , Citometría de Flujo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Aceites Volátiles/química , Fenotipo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Agua/química
10.
Int J Mol Sci ; 21(19)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992666

RESUMEN

Antimicrobial peptides (AMPs) are considered a promising new class of anti-infectious agents. This study reports new antimicrobial peptides derived from the Hirudo medicinalis microbiome identified by a computational analysis method applied to the H. medicinalis metagenome. The identified AMPs possess a strong antimicrobial activity against Gram-positive and Gram-negative bacteria (MIC range: 5.3 to 22.4 µM), including Staphylococcus haemolyticus, an opportunistic coagulase-negative pathogen. The secondary structure analysis of peptides via CD spectroscopy showed that all the AMPs except pept_352 have mostly disordered structures that do not change under different conditions. For peptide pept_352, the α-helical content increases in the membrane environment. The examination of the mechanism of action of peptides suggests that peptide pept_352 exhibits a direct membranolytic activity. Furthermore, the cytotoxicity assay demonstrated that the nontoxic peptide pept_1545 is a promising candidate for drug development. Overall, the analysis method implemented in the study may serve as an effective tool for the identification of new AMPs.


Asunto(s)
Antibacterianos/metabolismo , Péptidos Catiónicos Antimicrobianos/metabolismo , Descubrimiento de Drogas/métodos , Hirudo medicinalis/metabolismo , Hirudo medicinalis/microbiología , Microbiota/fisiología , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Dicroismo Circular , Fibroblastos/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Metagenoma , Ratones , Pruebas de Sensibilidad Microbiana , Conformación Proteica en Hélice alfa
11.
Arch Virol ; 164(3): 879-884, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30506471

RESUMEN

Escherichia coli bacteriophage Gostya9 (genus T5virus) was isolated from horse feces collected in Moscow, Russia, in 2013. This phage was associated in a single plaque with the previously reported phage 9g and was subsequently purified. Analysis of the complete genomic sequence of Gostya9 revealed that it is closely related to the T5-like bacteriophage DT57C, which had been isolated at the same location in 2007. These two viruses share 79.5% nucleotide sequence identity, which is below the 95% threshold applied currently to demarcate bacteriophage species. The most significant features distinguishing Gostya9 from DT57C include 1) the presence of one long tail fiber protein gene, 122c (ltf), instead of the two genes, ltfA and ltfB, that are present in DT57C; 2) the absence of the gene for the receptor-blocking lytic conversion lipoprotein precursor llp; and 3) the divergence of the receptor-recognition protein, pb5, which is only distantly related at the amino acid sequence level. The observed features of the Gostya9 adsorption apparatus are suggestive of a possible novel specificity for the final receptor and make this phage interesting for possible direct application in phage therapy of E. coli infections or as a source of receptor-recognition protein for engineering new phage specificities.


Asunto(s)
Colifagos/aislamiento & purificación , Escherichia coli/virología , Siphoviridae/aislamiento & purificación , Animales , Colifagos/clasificación , Colifagos/genética , Colifagos/ultraestructura , Escherichia coli/genética , Escherichia coli/metabolismo , Heces/virología , Genoma Viral , Caballos , Receptores Virales/genética , Receptores Virales/metabolismo , Siphoviridae/clasificación , Siphoviridae/genética , Siphoviridae/ultraestructura , Proteínas Virales/genética , Proteínas Virales/metabolismo
12.
Environ Microbiol ; 20(10): 3784-3797, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30117254

RESUMEN

Located on the shore of Kandalaksha Bay (the White Sea, Russia) and previously separated from it, Trekhtzvetnoe Lake (average depth 3.5 m) is one of the shallowest meromictic lakes known. Despite its shallowness, it features completely developed water column stratification with high-density microbial chemocline community (bacterial plate) and high rates of major biogeochemical processes. A sharp halocline stabilizes the stratification. Chlorobium phaeovibrioides dominated the bacterial plate, which reached a density of 2 × 108 cell ml-1 and almost completely intercepts H2 S diffusion from the anoxic monimolimnion. The resulting anoxygenic photosynthesis rate reached 240 µmol C l-1 day-1 , exceeding the oxygenic photosynthesis rate in the mixolimnion. The rates of other processes are also high, reaching 4.5 µmol CH4 l-1 day-1 for methane oxidation and 35 µmol S l-1 day-1 for sulfate reduction. Metagenomic analysis demonstrated that the Chl. phaeovibrioides population in the bacterial plate layer had nearly clonal homogeneity, although some fraction of these cells harbour a plasmid. The Chlorobium population was associated with bacteriophages that share homology with CRISPR spacers in the host. These features make the ecosystem of the Trekhtzvetnoe Lake a valuable model for studying regulation and evolution processes in natural high-density microbial systems.


Asunto(s)
Bacterias/aislamiento & purificación , Lagos/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/metabolismo , Ecosistema , Lagos/química , Metano/análisis , Metano/metabolismo , Oxidación-Reducción , Oxígeno/análisis , Oxígeno/metabolismo , Fotosíntesis , Federación de Rusia
13.
BMC Genomics ; 18(1): 544, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28724357

RESUMEN

BACKGROUND: Escherichia coli (E. coli) has been increasingly implicated in the pathogenesis of Crohn's disease (CD). The phylogeny of E. coli isolated from Crohn's disease patients (CDEC) was controversial, and while genotyping results suggested heterogeneity, the sequenced strains of E. coli from CD patients were closely related. RESULTS: We performed the shotgun genome sequencing of 28 E. coli isolates from ten CD patients and compared genomes from these isolates with already published genomes of CD strains and other pathogenic and non-pathogenic strains. CDEC was shown to belong to A, B1, B2 and D phylogenetic groups. The plasmid and several operons from the reference CD-associated E. coli strain LF82 were demonstrated to be more often present in CDEC genomes belonging to different phylogenetic groups than in genomes of commensal strains. The operons include carbon-source induced invasion GimA island, prophage I, iron uptake operons I and II, capsular assembly pathogenetic island IV and propanediol and galactitol utilization operons. CONCLUSIONS: Our findings suggest that CDEC are phylogenetically diverse. However, some strains isolated from independent sources possess highly similar chromosome or plasmids. Though no CD-specific genes or functional domains were present in all CD-associated strains, some genes and operons are more often found in the genomes of CDEC than in commensal E. coli. They are principally linked to gut colonization and utilization of propanediol and other sugar alcohols.


Asunto(s)
Enfermedad de Crohn/microbiología , Escherichia coli/genética , Escherichia coli/fisiología , Genómica , Adulto , Antibacterianos/farmacología , Bacteriocinas/biosíntesis , Farmacorresistencia Bacteriana/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Femenino , Variación Genética , Humanos , Masculino , Persona de Mediana Edad , Filogenia , Adulto Joven
14.
Artículo en Inglés | MEDLINE | ID: mdl-27919902

RESUMEN

The nucleotide sequence of a blaKPC-2-harboring plasmid (pKPCAPSS) from Klebsiella pneumoniae ST273 isolated in Saint Petersburg, Russia, from a patient with history of recent travel to Vietnam is presented. This 127,970-bp plasmid possessed both IncFII and IncR replicons. blaKPC-2 was localized on a hypothetical mobile element. This element was flanked by 38-bp inverted Tn3 repeats and included a Tn3-specific transposase gene, macrolide resistance operon (mphA-mrx-mphR), and a fragment of blaTEM with unique polymorphisms.


Asunto(s)
Antibacterianos/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Plásmidos/genética , beta-Lactamasas/genética , Asia Sudoriental , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Humanos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/aislamiento & purificación , Macrólidos/farmacología , Pruebas de Sensibilidad Microbiana , Operón , Federación de Rusia , Transposasas/genética , Vietnam
15.
Front Nutr ; 11: 1362529, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577158

RESUMEN

Sweet-tasting proteins (SPs) are proteins of plant origin initially isolated from tropical fruits. They are thousands of times sweeter than sucrose and most artificial sweeteners. SPs are a class of proteins capable of causing a sweet taste sensation in humans when interacting with the T1R2/T1R3 receptor. SP thaumatin has already been introduced in the food industry in some countries. Other SPs, such as monellin and brazzein, are promising products. An important stage in researching SPs, in addition to confirming the absence of toxicity, mutagenicity, oncogenicity, and allergenic effects, is studying their influence on gut microbiota. In this paper we describe changes in the composition of rat gut microbiota after six months of consuming one of two recombinant SPs-brazzein or monellin. A full length 16S gene sequencing method was used for DNA library barcoding. The MaAsLin2 analysis results showed noticeable fluctuations in the relative abundances of Anaerocella delicata in brazzein-fed rat microbiota, and of Anaerutruncus rubiinfantis in monellin-fed rat microbiota, which, however, did not exceed the standard deviation. The sucrose-fed group was associated with an increase in the relative abundance of Faecalibaculum rodentium, which may contribute to obesity. Overall, prolonged consumption of the sweet proteins brazzein and monellin did not significantly change rat microbiota and did not result in the appearance of opportunistic microbiota. This provides additional evidence for the safety of these potential sweeteners.

16.
Sci Adv ; 10(10): eadk1992, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457503

RESUMEN

The fungal bioluminescence pathway can be reconstituted in other organisms allowing luminescence imaging without exogenously supplied substrate. The pathway starts from hispidin biosynthesis-a step catalyzed by a large fungal polyketide synthase that requires a posttranslational modification for activity. Here, we report identification of alternative compact hispidin synthases encoded by a phylogenetically diverse group of plants. A hybrid bioluminescence pathway that combines plant and fungal genes is more compact, not dependent on availability of machinery for posttranslational modifications, and confers autonomous bioluminescence in yeast, mammalian, and plant hosts. The compact size of plant hispidin synthases enables additional modes of delivery of autoluminescence, such as delivery with viral vectors.


Asunto(s)
Luminiscencia , Plantas , Animales , Mamíferos
17.
J Fungi (Basel) ; 9(10)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37888277

RESUMEN

Aphelids are a holomycotan group, represented exclusively by parasitoids infecting algae. They form a sister lineage to Fungi in the phylogenetic tree and represent a key group for reconstruction of the evolution of Holomycota and for analysis of the origin of Fungi. The newly assembled genome of Aphelidium insullamus (Holomycota, Aphelida) with a total length of 18.9 Mb, 7820 protein-coding genes and a GC percentage of 52.05% was obtained by a hybrid assembly based on Oxford Nanopore long reads and Illumina paired reads. In order to trace the origin and the evolution of fungal osmotrophy and its presence or absence in Aphelida, we analyzed the set of main fungal transmembrane transporters, which are proteins of the Major Facilitator superfamily (MFS), in the predicted aphelid proteomes. This search has shown an absence of a specific fungal protein family Drug:H+ antiporters-2 (DAH-2) and specific fungal orthologs of the sugar porters (SP) family, and the presence of common opisthokont's orthologs of the SP family in four aphelid genomes. The repertoire of SP orthologs in aphelids turned out to be less diverse than in free-living opisthokonts, and one of the most limited among opisthokonts. We argue that aphelids do not show signs of similarity with fungi in terms of their osmotrophic abilities, despite the sister relationships of these groups. Moreover, the osmotrophic abilities of aphelids appear to be reduced in comparison with free-living unicellular opisthokonts. Therefore, we assume that the evolution of fungi-specific traits began after the separation of fungal and aphelid lineages, and there are no essential reasons to consider aphelids as a prototype of the fungal ancestor.

18.
Biochimie ; 204: 8-21, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36063975

RESUMEN

G-quadruplexes (G4s) are gaining increasing attention as possible regulators of chromatin packaging, and robust approaches to their studies in pseudo-native context are much needed. Here, we designed a simple in vitro model of G4-prone genomic DNA and employed it to elucidate the impact of G4s and G4-stabilizing ligands on nucleosome occupancy. We obtained two 226-bp dsDNA constructs composed of the strong nucleosome positioning sequence and an internucleosomal DNA-imitating tail. The tail was G4-free in the control construct and harbored a "strong" (stable) G4 motif in the construct of interest. An additional "weak" (semi-stable) G4 motif was found within the canonical nucleosome positioning sequence. Both G4s were confirmed by optical methods and 1H NMR spectroscopy. Electrophoretic mobility assays showed that the weak G4 motif did not obstruct nucleosome assembly, while the strong G4 motif in the tail sequence diminished nucleosome yield. Atomic force microscopy data and molecular modeling confirmed that the strong G4 was maintained in the tail of the correctly assembled nucleosome structure. Using both in vitro and in silico models, we probed three known G4 ligands and detected nucleosome-disrupting effects of the least selective ligand. Our results are in line with the negative correlation between stable G4s and nucleosome density, support G4 tolerance between regularly positioned nucleosomes, and highlight the importance of considering chromatin context when targeting genomic G4s.


Asunto(s)
Cromatina , G-Cuádruplex , Cromatina/genética , Nucleosomas , Ligandos , ADN/química
19.
Front Plant Sci ; 14: 1077301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818838

RESUMEN

Background: RAPID ALKALINIZATION FACTOR (RALFs) are cysteine-rich peptides that regulate multiple physiological processes in plants. This peptide family has considerably expanded during land plant evolution, but the role of ancient RALFs in modulating stress responses is unknown.Results: Here, we used the moss Physcomitrium patens as a model to gain insight into the role of RALF peptides in the coordination of plant growth and stress response in non-vascular plants. The quantitative proteomic analysis revealed concerted downregulation of M6 metalloprotease and some membrane proteins, including those involved in stress response, in PpRALF1, 2 and 3 knockout (KO) lines. The subsequent analysis revealed the role of PpRALF3 in growth regulation under abiotic and biotic stress conditions, implying the importance of RALFs in responding to various adverse conditions in bryophytes. We found that knockout of the PpRALF2 and PpRALF3 genes resulted in increased resistance to bacterial and fungal phytopathogens, Pectobacterium carotovorum and Fusarium solani, suggesting the role of these peptides in negative regulation of the immune response in P. patens. Comparing the transcriptomes of PpRALF3 KO and wild-type plants infected by F. solani showed that the regulation of genes in the phenylpropanoid pathway and those involved in cell wall modification and biogenesis was different in these two genotypes. Conclusion: Thus, our study sheds light on the function of the previously uncharacterized PpRALF3 peptide and gives a clue to the ancestral functions of RALF peptides in plant stress response.

20.
Polymers (Basel) ; 14(10)2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35632001

RESUMEN

We report the spontaneous formation of DNA-DNA junctions in solution in the absence of proteins visualised using atomic force microscopy. The synapsis position fits with potential G-quadruplex (G4) sites. In contrast to the Holliday structure, these conjugates have an affinity for G4 antibodies. Molecular modelling was used to elucidate the possible G4/IM-synaptic complex structures. Our results indicate a new role of the intermolecular noncanonical structures in chromatin architecture and genomic rearrangement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA