Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Haematologica ; 108(4): 1127-1140, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36453103

RESUMEN

Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is characterized by a severe ADAMTS13 deficiency due to the presence of anti-ADAMTS13 auto-antibodies, with subsequent accumulation of circulating ultra-large von Willebrand factor (VWF) multimers. The role of endothelial cell activation as a trigger of the disease has been suggested in animal models but remains to be demonstrated in humans. We prospectively obtained plasma from the first plasma exchange of 25 patients during iTTP acute phase. iTTP but not control plasma, induced a rapid VWF release and P-selectin exposure on the surface of dermal human micro-vascular endothelial cell (HMVEC-d), associated with angiopoietin-2 and endothelin-1 secretion, consistent with Weibel-Palade bodies exocytosis. Calcium (Ca2+) blockade significantly decreased VWF release, whereas iTTP plasma induced a rapid and sustained Ca2+ flux in HMVEC-d which correlated in retrospect, with disease severity and survival in 62 iTTP patients. F(ab)'2 fragments purified from the immunoglobulin G fraction of iTTP plasma mainly induced endothelial cell activation with additional minor roles for circulating free heme and nucleosomes, but not for complement. Furthermore, two anti-ADAMTS13 monoclonal antibodies purified from iTTP patients' B cells, but not serum from hereditary TTP, induced endothelial Ca2+ flux associated with Weibel-Palade bodies exocytosis in vitro, whereas inhibition of endothelial ADAMTS13 expression using small intering RNA, significantly decreased the stimulating effects of iTTP immunoglobulin G. In conclusion, Ca2+-mediated endothelial cell activation constitutes a "second hit" of iTTP, is correlated with the severity of the disease and may constitute a possible therapeutic target.


Asunto(s)
Púrpura Trombocitopénica Trombótica , Animales , Humanos , Calcio , Factor de von Willebrand/metabolismo , Inmunoglobulina G , Proteína ADAMTS13 , Gravedad del Paciente
2.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36675283

RESUMEN

Cardiac fibrosis constitutes irreversible necrosis of the heart muscle as a consequence of different acute (myocardial infarction) or chronic (diabetes, hypertension, …) diseases but also due to genetic alterations or aging. Currently, there is no curative treatment that is able to prevent or attenuate this phenomenon that leads to progressive cardiac dysfunction and life-threatening outcomes. This review summarizes the different targets identified and the new strategies proposed to fight cardiac fibrosis. Future directions, including the use of exosomes or nanoparticles, will also be discussed.


Asunto(s)
Cardiomiopatías , Infarto del Miocardio , Humanos , Cardiomiopatías/metabolismo , Miocardio/metabolismo , Infarto del Miocardio/metabolismo , Fibrosis , Transducción de Señal
3.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055160

RESUMEN

Background: Triple Negative Breast Cancers (TNBC) are the most aggressive breast cancers and lead to poor prognoses. This is due to a high resistance to therapies, mainly because of the presence of Cancer Stem Cells (CSCs). Plasticity, a feature of CSCs, is acquired through the Epithelial to Mesenchymal Transition (EMT), a process that has been recently shown to be regulated by a key molecule, CD146. Of interest, CD146 is over-expressed in TNBC. Methods: The MDA-MB-231 TNBC cell line was used as a model to study the role of CD146 and its secreted soluble form (sCD146) in the development and dissemination of TNBC using in vitro and in vivo studies. Results: High expression of CD146 in a majority of MDA-MB-231 cells leads to an increased secretion of sCD146 that up-regulates the expression of EMT and CSC markers on the cells. These effects can be blocked with a specific anti-sCD146 antibody, M2J-1 mAb. M2J-1 mAb was able to reduce tumour development and dissemination in a model of cells xenografted in nude mice and an experimental model of metastasis, respectively, in part through its effects on CSC. Conclusion: We propose that M2J-1 mAb could be used as an additional therapeutic approach to fight TNBC.


Asunto(s)
Antineoplásicos Inmunológicos/administración & dosificación , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Regulación hacia Arriba , Animales , Antineoplásicos Inmunológicos/farmacología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Células Madre Neoplásicas/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Int J Cancer ; 147(6): 1666-1679, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32022257

RESUMEN

Initially discovered in human melanoma, CD146/MCAM is expressed on many tumors and is correlated with cancer progression and metastasis. However, targeting CD146 remains challenging since it is also expressed on other cell types, as vessel cells, where it displays important physiological functions. We previously demonstrated that CD146 is shed as a soluble form (sCD146) that vectorizes the effects of membrane CD146 on tumor angiogenesis, growth and survival. We thus generated a novel monoclonal antibody, the M2J-1 mAb, which specifically targets sCD146, but not membrane CD146, and counteracts these effects. In our study, we analyzed the effects of sCD146 on the dissemination and the associated procoagulant phenotype in two highly invasive human CD146-positive cancer cell lines (ovarian and melanoma). Results show that sCD146 induced epithelial to mesenchymal transition, favored the generation of cancer stem cells and increased the membrane expression of tissue factor. Treatment of cancer cells with sCD146 in two experimental models (subcutaneous xenografting and intracardiac injection of cancer cells in nude mice) led to increased tumor dissemination and procoagulant activity. The M2J-1 mAb drastically reduced metastasis but also procoagulant activity, in particular by decreasing the number of circulating tumor microparticles, and blocked the relevant signaling pathways as demonstrated by RNA expression profiling experiments. Thus, our findings demonstrate that sCD146 mediates important pro-metastatic and procoagulant effects in two CD146-positive tumors. Targeting sCD146 with the newly generated M2J-1 mAb could constitute an innovative strategy for preventing dissemination and thromboembolism in many CD146-positive tumors.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Melanoma/prevención & control , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Tromboembolia/prevención & control , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Coagulación Sanguínea/efectos de los fármacos , Antígeno CD146/antagonistas & inhibidores , Antígeno CD146/sangre , Antígeno CD146/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Femenino , Humanos , Melanoma/sangre , Melanoma/complicaciones , Melanoma/secundario , Ratones , Invasividad Neoplásica/prevención & control , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Neoplasias Ováricas/sangre , Neoplasias Ováricas/complicaciones , Neoplasias Ováricas/patología , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/sangre , Neoplasias Cutáneas/complicaciones , Neoplasias Cutáneas/patología , Tromboembolia/etiología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Arterioscler Thromb Vasc Biol ; 39(6): 1026-1033, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31070478

RESUMEN

CD146 (cluster of differentiation 146) is an adhesion molecule that is expressed by different cells constituting vessels, particularly endothelial cells. The last 30 years of research in this field have shown that CD146 plays a key role in the control of several vessel functions. Three forms of CD146 have been described, including 2 transmembrane isoforms and a soluble protein that is detectable in the plasma. These CD146 forms mediate pleiotropic functions through homophilic and heterophilic interactions with proteins present on surrounding partners. Several studies used neutralizing antibodies, siRNA, or genetically modified mice to demonstrate the involvement of CD146 in the regulation of angiogenesis, vascular permeability, and leukocyte transmigration. In this review, we will focus on the current knowledge of the roles of CD146 in vascular homeostasis and diseases associated with endothelial dysfunction.


Asunto(s)
Antígenos CD/genética , Antígeno CD146/genética , Permeabilidad Capilar/genética , Moléculas de Adhesión Celular/genética , Homeostasis/genética , Neovascularización Patológica/genética , Animales , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular/genética , Movimiento Celular/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/genética , Sensibilidad y Especificidad
6.
J Mol Cell Cardiol ; 130: 76-87, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30928429

RESUMEN

AIMS: The progression of atherosclerosis is based on the continued recruitment of leukocytes in the vessel wall. The previously described role of CD146 in leukocyte infiltration suggests an involvement for this adhesion molecule in the inflammatory response. In this study, we investigated the role of CD146 in leukocyte recruitment by using an experimental model of atherogenesis. METHODS AND RESULTS: The role of CD146 was explored in atherosclerosis by crossing CD146-/- mice with ApoE-/- mice. CD146 -/-/ApoE -/- and ApoE -/- mice were fed a Western diet for 24 weeks and were monitored for aortic wall thickness using high frequency ultrasound. The arterial wall was significantly thicker in CD146-deficient mice. After 24 weeks of Western diet, a significant increase of atheroma in both total aortic lesion and aortic sinus of CD146-null mice was observed. In addition, atherosclerotic lesions were more inflammatory since plaques from CD146-deficient mice contained more neutrophils and macrophages. This was due to up-regulation of RANTES secretion by macrophages in CD146-deficient atherosclerotic arteries. This prompted us to further address the function of CD146 in leukocyte recruitment during acute inflammation by using a second experimental model of peritonitis induced by thioglycollate. Neutrophil recruitment was significantly increased in CD146-deficient mice 12 h after peritonitis induction and associated with higher RANTES levels in the peritoneal cavity. In CD146-null macrophages, we also showed that increased RANTES production was dependent on constitutive inhibition of the p38-MAPK signaling pathway. Finally, Maraviroc, a RANTES receptor antagonist, was able to reduce atherosclerotic lesions and neutrophilia in CD146-deficient mice to the same level as that found in ApoE -/- mice. CONCLUSIONS: Our data indicate that CD146 deficiency is associated with the upregulation of RANTES production and increased inflammation of atheroma, which could influence the atherosclerotic plaque fate. Thus, these data identify CD146 agonists as potential new therapeutic candidates for atherosclerosis treatment.


Asunto(s)
Aterosclerosis/metabolismo , Quimiocina CCL5/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Antígeno CD146/genética , Antígeno CD146/metabolismo , Quimiocina CCL5/genética , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Macrófagos/patología , Ratones , Ratones Noqueados para ApoE , Peritonitis/genética , Peritonitis/metabolismo , Peritonitis/patología , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología
7.
Blood ; 123(13): 2116-26, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24518759

RESUMEN

Epidemiological and experimental studies indicate that early vascular dysfunction occurs in low-birth-weight subjects, especially preterm (PT) infants. We recently reported impaired angiogenic activity of endothelial colony-forming cells (ECFCs) in this condition. We hypothesized that ECFC dysfunction in PT might result from premature senescence and investigated the underlying mechanisms. Compared with ECFCs from term neonates (n = 18), ECFCs isolated from PT (n = 29) display an accelerated senescence sustained by growth arrest and increased senescence-associated ß-galactosidase activity. Increased p16(INK4a) expression, in the absence of telomere shortening, indicates that premature PT-ECFC aging results from stress-induced senescence. SIRT1 level, a nicotinamide adenine dinucleotide-dependent deacetylase with anti-aging activities, is dramatically decreased in PT-ECFCs and correlated with gestational age. SIRT1 deficiency is subsequent to epigenetic silencing of its promoter. Transient SIRT1 overexpression or chemical induction by resveratrol treatment reverses senescence phenotype, and rescues in vitro PT-ECFC angiogenic defect in a SIRT1-dependent manner. SIRT1 overexpression also restores PT-ECFC capacity for neovessel formation in vivo. We thus demonstrate that decreased expression of SIRT1 drives accelerated senescence of PT-ECFCs, and acts as a critical determinant of the PT-ECFC angiogenic defect. These findings lay new grounds for understanding the increased cardiovascular risk in individuals born prematurely and open perspectives for therapeutic strategy.


Asunto(s)
Senescencia Celular/fisiología , Células Endoteliales/fisiología , Sangre Fetal/citología , Células Madre Hematopoyéticas/fisiología , Recien Nacido Prematuro/sangre , Sirtuina 1/genética , Estudios de Casos y Controles , Células Cultivadas , Regulación hacia Abajo/fisiología , Humanos , Recién Nacido , Nacimiento Prematuro/sangre , Estrés Fisiológico/fisiología
8.
Int J Cancer ; 137(1): 50-60, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25449773

RESUMEN

CD146 is an adhesion molecule expressed by both melanoma and endothelial cells and thus is well positioned to control melanoma extravasation. Nevertheless, during melanoma metastasis, the involvement of CD146 expressed within tumor microenvironment has never been analyzed. To investigate whether host CD146 mediates the extravasation of melanoma cells across the endothelium, we generated CD146 KO mice. We demonstrated that host CD146 did not affect melanoma growth or tumor angiogenesis but promoted hematogenous melanoma metastasis to the lung. Accordingly, the survival of CD146-deficient mice was markedly prolonged during melanoma metastasis. Interestingly, vascular endothelial growth factor-induced vascular permeability was significantly decreased in CD146 KO mice. We also provided evidence that VEGF-induced transendothelial migration of melanoma cells was significantly reduced across CD146 KO lung microvascular endothelial cells (LMEC). CD146 deficiency decreased the expression of VEGFR-2/Ve-cadherin and altered focal adhesion kinase (FAK) activation in response to VEGF. In addition, inhibition of FAK phosphorylation reduced transmigration of B16 melanoma cells across WT LMEC at the same level that across CD146 KO LMEC. Altogether, we propose a novel mechanism involving the VEGF/CD146/FAK/Ve-cadherin network in melanoma extravasation across the vessel barrier that identifies CD146-targeted therapy as a potential strategy for the treatment of melanoma metastasis.


Asunto(s)
Quinasa 1 de Adhesión Focal/metabolismo , Neoplasias Pulmonares/secundario , Pulmón/citología , Melanoma Experimental/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Antígenos CD/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Cadherinas/metabolismo , Endotelio Vascular/metabolismo , Regulación Neoplásica de la Expresión Génica , Pulmón/irrigación sanguínea , Neoplasias Pulmonares/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Ratones , Ratones Noqueados , Trasplante de Neoplasias , Neovascularización Patológica/metabolismo , Células Tumorales Cultivadas
9.
Int J Cancer ; 135(6): 1319-29, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24615579

RESUMEN

The clinical efficacy of anti-angiogenic monotherapies in metastatic breast cancer is less than originally anticipated, and it is not clear what the response of bone metastasis to anti-angiogenic therapies is. Here, we examined the impact of neutralizing tumor-derived vascular endothelial growth factor (VEGF) in animal models of subcutaneous tumor growth and bone metastasis formation. Silencing of VEGF expression (Sh-VEGF) in osteotropic human MDA-MB-231/B02 breast cancer cells led to a substantial growth inhibition of subcutaneous Sh-VEGF B02 tumor xenografts, as a result of reduced angiogenesis, when compared to that observed with animals bearing mock-transfected (Sc-VEGF) B02 tumors. However, there was scant evidence that either the silencing of tumor-derived VEGF or the use of a VEGF-neutralizing antibody (bevacizumab) affected B02 breast cancer bone metastasis progression in animals. We also examined the effect of vatalanib (a VEGF receptor tyrosine kinase inhibitor) in this mouse model of bone metastasis. However, vatalanib failed to inhibit bone metastasis caused by B02 breast cancer cells. In sharp contrast, vatalanib in combination with bevacizumab reduced not only bone destruction but also skeletal tumor growth in animals bearing breast cancer bone metastases, when compared with either agent alone. Thus, our study highlights the importance of targeting both the tumor compartment and the host tissue (i.e., skeleton) to efficiently block the development of bone metastasis. We believe this is a crucially important observation as the clinical benefit of anti-angiogenic monotherapies in metastatic breast cancer is relatively modest.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Óseas/secundario , Neoplasias Óseas/terapia , Neoplasias de la Mama/terapia , Inhibidores de la Angiogénesis/administración & dosificación , Animales , Anticuerpos Monoclonales Humanizados/administración & dosificación , Bevacizumab , Neoplasias Óseas/irrigación sanguínea , Neoplasias Óseas/genética , Neoplasias de la Mama/irrigación sanguínea , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Huésped Inmunocomprometido , Ratones , Ratones Endogámicos C3H , Osteólisis/tratamiento farmacológico , Osteólisis/patología , Ftalazinas/administración & dosificación , Embarazo , Piridinas/administración & dosificación , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Receptores de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Transfección , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/genética , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Front Immunol ; 14: 1228122, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077384

RESUMEN

Objective: IL-1ß is a leaderless cytokine with poorly known secretory mechanisms that is barely detectable in serum of patients, including those with an IL-1ß-mediated disease such as systemic juvenile idiopathic arthritis (sJIA). Leukocyte microvesicles (MVs) may be a mechanism of IL-1ß secretion. The first objective of our study was to characterize IL-1ß-positive MVs obtained from macrophage cell culture supernatants and to investigate their biological functions in vitro and in vivo. The second objective was to detect circulating IL-1ß-positive MVs in JIA patients. Methods: MVs were purified by serial centrifugations from PBMCs, or THP-1 differentiated into macrophages, then stimulated with LPS ± ATP. MV content was analyzed for the presence of IL-1ß, NLRP3 inflammasome, caspase-1, P2X7 receptor, and tissue factor (TF) using ELISA, Western blot, or flow cytometry. MV biological properties were studied in vitro by measuring VCAM-1, ICAM-1, and E-selectin expression after HUVEC co-culture and factor-Xa generation test was realized. In vivo, MVs' ability to recruit leukocytes in a murine model of peritonitis was evaluated. Plasmatic IL-1ß-positive MVs were studied ex vivo in 10 active JIA patients using flow cytometry. Results: THP-1-derived macrophages stimulated with LPS and ATP released MVs, which contained NLRP3, caspase-1, and the 33-kDa precursor and 17-kDa mature forms of IL-1ß and bioactive TF. IL-1ß-positive MVs expressed P2X7 receptor and released soluble IL-1ß in response to ATP stimulation in vitro. In mice, MVs induced a leukocyte peritoneal infiltrate, which was reduced by treatment with the IL-1 receptor antagonist. Finally, IL-1ß-positive MVs were detectable in plasma from 10 active JIA patients. Conclusion: MVs shed from activated macrophages contain IL-1ß, NLRP3 inflammasome components, and TF, and constitute thrombo-inflammatory vectors that can be detected in the plasma from active JIA patients.


Asunto(s)
Artritis Juvenil , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Artritis Juvenil/metabolismo , Lipopolisacáridos/farmacología , Receptores Purinérgicos P2X7/metabolismo , Macrófagos/metabolismo , Caspasa 1/metabolismo , Adenosina Trifosfato/metabolismo
12.
J Invest Dermatol ; 142(12): 3200-3210.e5, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35690141

RESUMEN

CD146 involvement was recently described in skin fibrosis of systemic sclerosis through its regulation of the Wnt pathway. Because the interaction between Wnt and ROS signaling plays a major role in fibrosis, we hypothesized that in systemic sclerosis, CD146 may regulate Wnt/ROS crosstalk. Using a transcriptomic and western blot analysis performed on CD146 wild-type or knockout mouse embryonic fibroblasts, we showed a procanonical Wnt hallmark in the absence of CD146 that is reversed when CD146 expression is restored. We found an elevated ROS content in knockout cells and an increase in DNA oxidative damage in the skin sections of knockout mice compared with those of wild-type mice. We also showed that ROS increased CD146 and its noncanonical Wnt ligand, WNT5A, only in wild-type cells. In humans, fibroblasts from patients with systemic sclerosis presented higher ROS content and expressed CD146, whereas control fibroblasts did not. Moreover, CD146 and its ligand were upregulated by ROS in both human fibroblasts. The increase in bleomycin-induced WNT5A expression was abrogated when CD146 was silenced. We showed an interplay between Wnt and ROS signaling in systemic sclerosis, regulated by CD146, which promotes the noncanonical Wnt pathway and prevents ROS signaling, opening the way for innovative therapeutic strategies.


Asunto(s)
Esclerodermia Sistémica , Vía de Señalización Wnt , Humanos , Animales , Ratones , Vía de Señalización Wnt/fisiología , Antígeno CD146/genética , Antígeno CD146/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ligandos , Fibroblastos/metabolismo , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/metabolismo , Fibrosis , Estrés Oxidativo
13.
F S Sci ; 3(1): 84-94, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35559998

RESUMEN

OBJECTIVE: To explore the regulatory role of soluble CD146 (sCD146) and its interaction with galectin-1 (Gal1) in placenta-mediated complications of pregnancy. DESIGN: Prospective pilot and experimental studies. SETTING: University-affiliated hospital and academic research laboratory. PATIENT(S): One hundred fifteen women divided into three groups: 30 healthy, nonpregnant women, 50 women with normal pregnancies, and 35 with placenta-mediated pregnancy complications. INTERVENTION(S): Wound-healing experiments were conducted to study trophoblast migration. MAIN OUTCOME MEASURE(S): Quantification of sCD146 and Gal1 by enzyme-linked immunosorbent assay. Analysis of trophoblast migration by wound closure. RESULT(S): Concomitant detection of sCD146 and Gal1 showed lower sCD146 and higher Gal1 concentrations in women with normal pregnancies compared with nonpregnant women. In addition, follow-up of these women revealed a decrease in sCD146 associated with an increase in Gal1 throughout pregnancy. In contrast, in women with preeclampsia, we found significantly higher sCD146 concentrations compared with women with normal pregnancies and no modification of Gal1. We emphasize the opposing effects of sCD146 and Gal, since, unlike Gal1, sCD146 inhibits trophoblast migration. Moreover, the migratory effect of Gal1 was abrogated with the use of an anti-CD146 blocking antibody or the use of small interfering RNA to silence VEGFR2 expression. This suggests that trophoblast migration is mediated though the interaction of Gal1 with CD146, further activating the VEGFR2 signaling pathway. Significantly, sCD146 blocked the migratory effects of Gal1 on trophoblasts and inhibited its secretion, suggesting that sCD146 acts as a ligand trap. CONCLUSION(S): Soluble CD146 could be proposed as a biomarker in preeclampsia and a potential therapeutic target. CLINICAL TRIAL REGISTRATION NUMBER: NCT 01736826.


Asunto(s)
Preeclampsia , Trofoblastos , Antígeno CD146/metabolismo , Femenino , Galectina 1 , Humanos , Embarazo , Estudios Prospectivos , Trofoblastos/metabolismo
14.
Arthritis Rheumatol ; 74(6): 1027-1038, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35001552

RESUMEN

OBJECTIVE: Systemic sclerosis (SSc) is an autoimmune disorder characterized by excessive fibrosis, immune dysfunction, and vascular damage, in which the expression of many growth factors is deregulated. CD146 was recently described as a major actor in SSc. Since CD146 also exists as a circulating soluble form (sCD146) that acts as a growth factor in numerous angiogenic- and inflammation-related pathologies, we sought to identify the mechanisms underlying the generation of sCD146 and to characterize the regulation and functions of the different variants identified in SSc. METHODS: We performed in vitro experiments, including RNA-Seq and antibody arrays, and in vivo experiments using animal models of bleomycin-induced SSc and hind limb ischemia. RESULTS: Multiple forms of sCD146, generated by both shedding and alternative splicing of the primary transcript, were discovered. The shed form of sCD146 was generated from the cleavage of both long and short membrane isoforms of CD146 through ADAM-10 and TACE metalloproteinases, respectively. In addition, 2 novel sCD146 splice variants, I5-13-sCD146 and I10-sCD146, were identified. Of interest, I5-13-sCD146 was significantly increased in the sera of SSc patients (P < 0.001; n = 117), in particular in patients with pulmonary fibrosis (P < 0.01; n = 112), whereas I10-sCD146 was decreased (P < 0.05; n = 117). Further experiments revealed that shed sCD146 and I10-sCD146 displayed proangiogenic activity through the focal adhesion kinase and protein kinase Cε signaling pathways, respectively, whereas I5-13-sCD146 displayed profibrotic effects through the Wnt-1/ß-catenin/WISP-1 pathway. CONCLUSION: Variants of sCD146, and in particular the novel I5-13-sCD146 splice variant, could constitute novel biomarkers and/or molecular targets for the diagnosis and treatment of SSc and other angiogenesis- or fibrosis-related disorders.


Asunto(s)
Antígeno CD146 , Esclerodermia Sistémica , Animales , Biomarcadores , Antígeno CD146/genética , Antígeno CD146/metabolismo , Fibrosis , Humanos , Péptidos y Proteínas de Señalización Intercelular , Isquemia , Esclerodermia Sistémica/genética , Esclerodermia Sistémica/metabolismo
15.
Acta Neuropathol Commun ; 10(1): 151, 2022 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274147

RESUMEN

RATIONALE: Glioblastoma multiforme (GBM) is a primary brain tumor with poor prognosis. The U.S. food and drug administration approved the use of the anti-VEGF antibody bevacizumab in recurrent GBM. However, resistance to this treatment is frequent and fails to enhance the overall survival of patients. In this study, we aimed to identify novel mechanism(s) responsible for bevacizumab-resistance in CD146-positive glioblastoma. METHODS: The study was performed using sera from GBM patients and human GBM cell lines in culture or xenografted in nude mice. RESULTS: We found that an increase in sCD146 concentration in sera of GBM patients after the first cycle of bevacizumab treatment was significantly associated with poor progression free survival and shorter overall survival. Accordingly, in vitro treatment of CD146-positive glioblastoma cells with bevacizumab led to a high sCD146 secretion, inducing cell invasion. These effects were mediated through integrin αvß3 and were blocked by mucizumab, a novel humanized anti-sCD146 antibody. In vivo, the combination of bevacizumab with mucizumab impeded CD146 + glioblastoma growth and reduced tumor cell dissemination to an extent significantly higher than that observed with bevacizumab alone. CONCLUSION: We propose sCD146 to be 1/ an early biomarker to predict and 2/ a potential target to prevent bevacizumab resistance in patients with glioblastoma.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Ratones , Animales , Humanos , Glioblastoma/patología , Bevacizumab/farmacología , Bevacizumab/uso terapéutico , Antígeno CD146/metabolismo , Ratones Desnudos , Integrina alfaVbeta3/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Biomarcadores , Neoplasias Encefálicas/patología
17.
Biomedicines ; 8(12)2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33321883

RESUMEN

CD146 is a cell adhesion molecule expressed on endothelial cells, as well as on other cells such as mesenchymal stem cells and Th17 lymphocytes. This protein also exists in a soluble form, whereby it can be detected in biological fluids, including the serum or the cerebrospinal fluid (CSF). Some studies have highlighted the significance of CD146 and its soluble form in angiogenesis and inflammation, having been shown to contribute to the pathogenesis of many inflammatory autoimmune diseases, such as systemic sclerosis, mellitus diabetes, rheumatoid arthritis, inflammatory bowel diseases, and multiple sclerosis. In this review, we will focus on how CD146 and sCD146 contribute to the pathogenesis of the aforementioned autoimmune diseases and discuss the relevance of considering it as a biomarker in these pathologies.

18.
Biomedicines ; 8(12)2020 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-33352759

RESUMEN

The fundamental role of cell adhesion molecules in mediating various biological processes as angiogenesis has been well-documented. CD146, an adhesion molecule of the immunoglobulin superfamily, and its soluble form, constitute major players in both physiological and pathological angiogenesis. A growing body of evidence shows soluble CD146 to be significantly elevated in the serum or interstitial fluid of patients with pathologies related to deregulated angiogenesis, as autoimmune diseases, obstetric and ocular pathologies, and cancers. To block the undesirable effects of this molecule, therapeutic antibodies have been developed. Herein, we review the multifaceted functions of CD146 in physiological and pathological angiogenesis and summarize the interest of using monoclonal antibodies for therapeutic purposes.

19.
Cells ; 9(6)2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585982

RESUMEN

Induced pluripotent stem cells (iPSCs) obtained by reprogramming primary somatic cells have revolutionized the fields of cell biology and disease modeling. However, the number protocols for generating mature muscle fibers with sarcolemmal organization using iPSCs remain limited, and partly mimic the complexity of mature skeletal muscle. Methods: We used a novel combination of small molecules added in a precise sequence for the simultaneous codifferentiation of human iPSCs into skeletal muscle cells and motor neurons. Results: We show that the presence of both cell types reduces the production time for millimeter-long multinucleated muscle fibers with sarcolemmal organization. Muscle fiber contractions are visible in 19-21 days, and can be maintained over long period thanks to the production of innervated multinucleated mature skeletal muscle fibers with autonomous cell regeneration of PAX7-positive cells and extracellular matrix synthesis. The sequential addition of specific molecules recapitulates key steps of human peripheral neurogenesis and myogenesis. Furthermore, this organoid-like culture can be used for functional evaluation and drug screening. Conclusion: Our protocol, which is applicable to hiPSCs from healthy individuals, was validated in Duchenne Muscular Dystrophy, Myotonic Dystrophy, Facio-Scapulo-Humeral Dystrophy and type 2A Limb-Girdle Muscular Dystrophy, opening new paths for the exploration of muscle differentiation, disease modeling and drug discovery.


Asunto(s)
Fibras Musculares Esqueléticas/fisiología , Distrofia Muscular de Duchenne/fisiopatología , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Humanos
20.
Mol Cell Biol ; 26(18): 6983-92, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16943438

RESUMEN

Alternative splicing in the BRCA1 locus generates multiple protein products including BRCA1-Delta11, which is identical to the BRCA1 full-length isoform (BRCA1-FL) except for the absence of exon 11. Mutation analysis using gene targeting to create null mutations or disrupt BRCA-FL has provided much of our understanding of BRCA1 functions; however, targeted mutation of specific short forms of BRCA1 has not been reported. To understand the physiologic functions of BRCA1-Delta11, we used a knock-in approach that blocks alternative splicing between exons 10 and 12 to prevent the formation of this form of BRCA1. We showed that homozygous mutant mice (Brca1(FL/FL)) were born at a Mendelian ratio without obvious developmental defects. However, the majority of Brca1(FL/FL) female mice showed mammary gland abnormalities and uterine hyperplasia after one year of age with spontaneous tumor formation. Cultured Brca1(FL/FL) cells exhibited abnormal centrosome amplification and reduction of G(1) population that was accompanied by accumulation of cyclin E and cyclin A. Accumulation of cyclin E was also found in epithelial layers of dilated ducts and hyperproliferative lobular regions in the mammary glands of Brca1(FL/FL) mice. These observations provide evidence that BRCA1 splicing variants are involved in BRCA1 functions in modulating G(1)/S transition, centrosome duplication, and repressing tumor formation.


Asunto(s)
Proteína BRCA1/deficiencia , Neoplasias de los Genitales Femeninos/patología , Genitales Femeninos/patología , Envejecimiento , Animales , Apoptosis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Células Cultivadas , Ciclina E/metabolismo , Daño del ADN , Femenino , Fibroblastos/citología , Fibroblastos/efectos de la radiación , Fase G1/efectos de la radiación , Rayos gamma , Eliminación de Gen , Marcación de Gen , Genitales Femeninos/citología , Hiperplasia , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/patología , Ratones , Ratones Mutantes , Isoformas de Proteínas/deficiencia , Fase S/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA