Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 165(4): 882-95, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27133169

RESUMEN

High-fat diet (HFD) feeding induces rapid reprogramming of systemic metabolism. Here, we demonstrate that HFD feeding of mice downregulates glucose transporter (GLUT)-1 expression in blood-brain barrier (BBB) vascular endothelial cells (BECs) and reduces brain glucose uptake. Upon prolonged HFD feeding, GLUT1 expression is restored, which is paralleled by increased expression of vascular endothelial growth factor (VEGF) in macrophages at the BBB. In turn, inducible reduction of GLUT1 expression specifically in BECs reduces brain glucose uptake and increases VEGF serum concentrations in lean mice. Conversely, myeloid-cell-specific deletion of VEGF in VEGF(Δmyel) mice impairs BBB-GLUT1 expression, brain glucose uptake, and memory formation in obese, but not in lean mice. Moreover, obese VEGF(Δmyel) mice exhibit exaggerated progression of cognitive decline and neuroinflammation on an Alzheimer's disease background. These experiments reveal that transient, HFD-elicited reduction of brain glucose uptake initiates a compensatory increase of VEGF production and assign obesity-associated macrophage activation a homeostatic role to restore cerebral glucose metabolism, preserve cognitive function, and limit neurodegeneration in obesity.


Asunto(s)
Encéfalo/metabolismo , Dieta Alta en Grasa , Glucosa/metabolismo , Obesidad/fisiopatología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Cognición , Células Endoteliales/metabolismo , Ácidos Grasos/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Ratones , Células Mieloides/metabolismo
2.
Cell ; 165(1): 125-138, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27015310

RESUMEN

Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Regulación del Apetito , Glucosa/metabolismo , Resistencia a la Insulina , Neuronas/metabolismo , Proteína Relacionada con Agouti/metabolismo , Animales , Conducta Alimentaria , Ratones , Miostatina/genética , Optogenética , Transcriptoma
4.
Neuroimage ; 128: 54-62, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26747749

RESUMEN

Inflammatory cells such as microglia need energy to exert their functions and to maintain their cellular integrity and membrane potential. Subsequent to cerebral ischemia, inflammatory cells infiltrate tissue with limited blood flow where neurons and astrocytes died due to insufficient supply with oxygen and glucose. Using dual tracer positron emission tomography (PET), we found that concomitant with the presence of inflammatory cells, transport and consumption of glucose increased up to normal levels but returned to pathological levels as soon as inflammatory cells disappeared. Thus, inflammatory cells established sufficient glucose supply to satisfy their energy demands even in regions with insufficient supply for neurons and astrocytes to survive. Our data suggest that neurons and astrocytes died from oxygen deficiency and inflammatory cells metabolized glucose non-oxidatively in regions with residual availability. As a consequence, glucose metabolism of inflammatory cells can mask metabolic deficits in neurodegenerative diseases. We further found that the PET tracer did not bind to inflammatory cells in severely hypoperfused regions and thus only a part of the inflammation was detected. We conclude that glucose consumption of inflammatory cells should be taken into account when analyzing disease-related alterations of local cerebral metabolism.


Asunto(s)
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Inflamación/metabolismo , Animales , Encéfalo/patología , Procesamiento de Imagen Asistido por Computador , Inflamación/patología , Imagen por Resonancia Magnética , Masculino , Tomografía de Emisión de Positrones , Ratas , Ratas Wistar
6.
Nat Metab ; 6(3): 473-493, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38378998

RESUMEN

Agouti-related peptide (AgRP)-expressing and proopiomelanocortin (POMC)-expressing neurons reciprocally regulate food intake. Here, we combine non-interacting recombinases to simultaneously express functionally opposing chemogenetic receptors in AgRP and POMC neurons for comparing metabolic responses in male and female mice with simultaneous activation of AgRP and inhibition of POMC neurons with isolated activation of AgRP neurons or isolated inhibition of POMC neurons. We show that food intake is regulated by the additive effect of AgRP neuron activation and POMC neuron inhibition, while systemic insulin sensitivity and gluconeogenesis are differentially modulated by isolated-versus-simultaneous regulation of AgRP and POMC neurons. We identify a neurocircuit engaging Npy1R-expressing neurons in the paraventricular nucleus of the hypothalamus, where activated AgRP neurons and inhibited POMC neurons cooperate to promote food consumption and activate Th+ neurons in the nucleus tractus solitarii. Collectively, these results unveil how food intake is precisely regulated by the simultaneous bidirectional interplay between AgRP and POMC neurocircuits.


Asunto(s)
Neuronas , Proopiomelanocortina , Ratones , Masculino , Femenino , Animales , Proopiomelanocortina/metabolismo , Proteína Relacionada con Agouti/metabolismo , Neuronas/metabolismo , Hipotálamo/metabolismo
7.
Diabetes ; 73(7): 1058-1071, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608276

RESUMEN

The Rab-GTPase-activating protein (RabGAP) TBC1D4 (AS160) represents a key component in the regulation of glucose transport into skeletal muscle and white adipose tissue (WAT) and is therefore crucial during the development of insulin resistance and type 2 diabetes. Increased daily activity has been shown to be associated with improved postprandial hyperglycemia in allele carriers of a loss-of-function variant in the human TBC1D4 gene. Using conventional Tbc1d4-deficient mice (D4KO) fed a high-fat diet, we show that moderate endurance exercise training leads to substantially improved glucose and insulin tolerance and enhanced expression levels of markers for mitochondrial activity and browning in WAT from D4KO animals. Importantly, in vivo and ex vivo analyses of glucose uptake revealed increased glucose clearance in interscapular brown adipose tissue and WAT from trained D4KO mice. Thus, chronic exercise is able to overcome the genetically induced insulin resistance caused by Tbc1d4 depletion. Gene variants in TBC1D4 may be relevant in future precision medicine as determinants of exercise response.


Asunto(s)
Tejido Adiposo Blanco , Proteínas Activadoras de GTPasa , Resistencia a la Insulina , Ratones Noqueados , Condicionamiento Físico Animal , Resistencia a la Insulina/genética , Resistencia a la Insulina/fisiología , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Animales , Ratones , Condicionamiento Físico Animal/fisiología , Tejido Adiposo Blanco/metabolismo , Dieta Alta en Grasa , Masculino , Tejido Adiposo Pardo/metabolismo , Músculo Esquelético/metabolismo , Glucosa/metabolismo , Ratones Endogámicos C57BL
8.
Stroke ; 43(1): 193-8, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22033990

RESUMEN

BACKGROUND AND PURPOSE: Experimental stroke models are essential to study in vivo pathophysiological processes of focal cerebral ischemia. In this study, an embolic stroke model in rats was applied (1) to characterize early development of regional cerebral blood flow and metabolism with positron emission tomography (PET) using [(15)O]H(2)O and [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG); and (2) to identify potential parameters for predicting tissue fate. METHODS: Remote occlusion of the middle cerebral artery was induced in 10 Wistar rats by injection of 4 TiO(2) macrospheres. Sequential [(15)O]H(2)O-PET (baseline, 5, 30, 60 minutes after middle cerebral artery occlusion) and FDG-PET measurements (75 minutes after middle cerebral artery occlusion) were performed. [(15)O]H(2)O-PET data and FDG kinetic parameters were compared with MRIs and histology at 24 hours. RESULTS: Regional cerebral blood flow decreased substantially within 30 minutes after middle cerebral artery occlusion (41% to 58% of baseline regional cerebral blood flow; P<0.001) with no relevant changes between 30 and 60 minutes. At 60 minutes, regional cerebral blood flow correlated well with the unidirectional transport parameter K1 of FDG in all animals (r=0.86±0.09; P<0.001). Tissue fate could be accurately predicted taking into account K1 and net influx rate constant Ki of FDG. The infarct volume predicted by FDG-PET (375.8±102.3 mm(3)) correlated significantly with the infarct size determined by MRI after 24 hours (360.8±93.7 mm(3); r=0.85). CONCLUSIONS: Hypoperfused tissue can be identified by decreased K1 of FDG. Acute ischemic tissue can be well characterized using K1 and Ki allowing for discrimination between infarct core and early viable tissue. Because FDG-PET is widely spread, our findings can be easily translated into clinical application for early diagnoses of ischemia.


Asunto(s)
Isquemia Encefálica/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Animales , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular/fisiología , Modelos Animales de Enfermedad , Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Ratas , Ratas Wistar
9.
Curr Biol ; 32(19): 4306-4313.e4, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36084646

RESUMEN

Brains are among the most energetically costly tissues in the mammalian body.1 This is predominantly caused by expensive neurons with high glucose demands.2 Across mammals, the neuronal energy budget appears to be fixed, possibly posing an evolutionary constraint on brain growth.3-6 Compared to similarly sized mammals, birds have higher numbers of neurons, and this advantage conceivably contributes to their cognitive prowess.7 We set out to determine the neuronal energy budget of birds to elucidate how they can metabolically support such high numbers of neurons. We estimated glucose metabolism using positron emission tomography (PET) and 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) as the radiotracer in awake and anesthetized pigeons. Combined with kinetic modeling, this is the gold standard to quantify cerebral metabolic rate of glucose consumption (CMRglc).8 We found that neural tissue in the pigeon consumes 27.29 ± 1.57 µmol glucose per 100 g per min in an awake state, which translates into a surprisingly low neuronal energy budget of 1.86 × 10-9 ± 0.2 × 10-9 µmol glucose per neuron per minute. This is approximately 3 times lower than the rate in the average mammalian neuron.3 The remarkably low neuronal energy budget explains how pigeons, and possibly other avian species, can support such high numbers of neurons without associated metabolic costs or compromising neuronal signaling. The advantage in neuronal processing of information at a higher efficiency possibly emerged during the distinct evolution of the avian brain.


Asunto(s)
Fluorodesoxiglucosa F18 , Glucosa , Animales , Aves/metabolismo , Encéfalo/metabolismo , Glucosa/metabolismo , Mamíferos , Neuronas/metabolismo
10.
Neurorehabil Neural Repair ; 36(10-11): 701-714, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36124996

RESUMEN

BACKGROUND: Transcranial direct current stimulation (tDCS) promotes recovery after stroke in humans. The underlying mechanisms, however, remain to be elucidated. Animal models suggest tDCS effects on neuroinflammation, stem cell proliferation, neurogenesis, and neural plasticity. OBJECTIVE: In a longitudinal study, we employed tDCS in the subacute and chronic phase after experimental focal cerebral ischemia in mice to explore the relationship between functional recovery and cellular processes. METHODS: Mice received photothrombosis in the right motor cortex, verified by Magnetic Resonance Imaging. A composite neuroscore quantified subsequent functional deficits. Mice received tDCS daily: either 5 sessions from day 5 to 9, or 10 sessions with days 12 to 16 in addition. TDCS with anodal or cathodal polarity was compared to sham stimulation. Further imaging to assess proliferation and neuroinflammation was performed by immunohistochemistry at different time points and Positron Emission Tomography at the end of the observation time of 3 weeks. RESULTS: Cathodal tDCS at 198 kC/m2 (220 A/m2) between days 5 and 9 accelerated functional recovery, increased neurogenesis, decreased microglial activation, and mitigated CD16/32-expression associated with M1-phenotype. Anodal tDCS exerted similar effects on neurogenesis and microglial polarization but not on recovery of function or microglial activation. TDCS on days 12 to 16 after stroke did not induce any further effects, suggesting that the therapeutic time window was closed by then. CONCLUSION: Overall, data suggest that non-invasive neuromodulation by tDCS impacts neurogenesis and microglial activation as critical cellular processes influencing functional recovery during the early phase of regeneration from focal cerebral ischemia.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular , Estimulación Transcraneal de Corriente Directa , Humanos , Animales , Ratones , Estimulación Transcraneal de Corriente Directa/métodos , Recuperación de la Función , Estudios Longitudinales , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/terapia , Isquemia Encefálica/complicaciones , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Infarto Cerebral/complicaciones
11.
J Neurosci ; 30(29): 9708-14, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20660253

RESUMEN

Decision making refers to the process by which subjects choose between competing courses of action based on the expected costs and benefits of their consequences. Lesion studies in rats suggest that the anterior cingulate cortex and the nucleus accumbens are key structures of a neural system that subserves effort-based decision making. Little is known about brain activation associated with effort-based decisions in intact rats. Using an open hypothesis approach, we used 2-deoxy-2[(18)F]fluoro-D-glucose positron emission tomography (FDG-PET) to assess regional metabolic changes in two conditions of an effort-based decision making task. In the "same effort" condition, male rats could choose between two response options associated with the same effort but different reward sizes, i.e., decision making was simply a function of reward size. By contrast, in the "different effort" condition, an integration of different efforts and reward sizes associated with the two response options was necessary before making a decision. Separate PET scans were performed from each condition. Subtractive analysis revealed that metabolic activity was increased in the different effort relative to the same effort condition in the left anterior cingulate, left orbitofrontal and prelimbic cortex region. Metabolic activity was decreased in the infralimbic cortex and septum region. Our findings suggest that making decisions on how much effort to invest to obtain greater rewards evokes changes of metabolic activity in multiple brain areas associated with cognitive, limbic, motor and autonomic functions. This study demonstrates that FDG-PET provides a tool to determine in rats regional brain metabolic activity in cognitive tasks.


Asunto(s)
Toma de Decisiones/fisiología , Giro del Cíngulo/fisiología , Núcleo Accumbens/fisiología , Corteza Prefrontal/fisiología , Recompensa , Animales , Condicionamiento Operante , Fluorodesoxiglucosa F18/farmacocinética , Giro del Cíngulo/diagnóstico por imagen , Masculino , Núcleo Accumbens/diagnóstico por imagen , Tomografía de Emisión de Positrones , Corteza Prefrontal/diagnóstico por imagen , Ratas
12.
J Neurosci ; 30(18): 6454-60, 2010 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-20445071

RESUMEN

Neural stem cells reside in two major niches in the adult brain [i.e., the subventricular zone (SVZ) and the dentate gyrus of the hippocampus]. Insults to the brain such as cerebral ischemia result in a physiological mobilization of endogenous neural stem cells. Since recent studies showed that pharmacological stimulation can be used to expand the endogenous neural stem cell niche, hope has been raised to enhance the brain's own regenerative capacity. For the evaluation of such novel therapeutic approaches, longitudinal and intraindividual monitoring of the endogenous neural stem cell niche would be required. However, to date no conclusive imaging technique has been established. We used positron emission tomography (PET) and the radiotracer 3'-deoxy-3'-[(18)F]fluoro-l-thymidine ([(18)F]FLT) that enables imaging and measuring of proliferation to noninvasively detect endogenous neural stem cells in the normal and diseased adult rat brain in vivo. This method indeed visualized neural stem cell niches in the living rat brain, identified as increased [(18)F]FLT-binding in the SVZ and the hippocampus. Focal cerebral ischemia and subsequent damage of the blood-brain barrier did not interfere with the capability of [(18)F]FLT-PET to visualize neural stem cell mobilization. Moreover, [(18)F]FLT-PET allowed for an in vivo quantification of increased neural stem cell mobilization caused by pharmacological stimulation or by focal cerebral ischemia. The data suggest that noninvasive longitudinal monitoring and quantification of endogenous neural stem cell activation in the brain is feasible and that [(18)F]FLT-PET could be used to monitor the effects of drugs aimed at expanding the neural stem cell niche.


Asunto(s)
Neuronas/fisiología , Tomografía de Emisión de Positrones/métodos , Células Madre/fisiología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/metabolismo , Encéfalo/fisiología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Didesoxinucleósidos/metabolismo , Factor 2 de Crecimiento de Fibroblastos/farmacología , Insulina/farmacología , Péptidos y Proteínas de Señalización Intracelular , Ventrículos Laterales/efectos de los fármacos , Ventrículos Laterales/fisiología , Proteínas de la Membrana/farmacología , Neuronas/metabolismo , Ratas , Células Madre/metabolismo
13.
Cell Metab ; 33(7): 1466-1482.e7, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34043943

RESUMEN

Sensory neurons relay gut-derived signals to the brain, yet the molecular and functional organization of distinct populations remains unclear. Here, we employed intersectional genetic manipulations to probe the feeding and glucoregulatory function of distinct sensory neurons. We reconstruct the gut innervation patterns of numerous molecularly defined vagal and spinal afferents and identify their downstream brain targets. Bidirectional chemogenetic manipulations, coupled with behavioral and circuit mapping analysis, demonstrated that gut-innervating, glucagon-like peptide 1 receptor (GLP1R)-expressing vagal afferents relay anorexigenic signals to parabrachial nucleus neurons that control meal termination. Moreover, GLP1R vagal afferent activation improves glucose tolerance, and their inhibition elevates blood glucose levels independent of food intake. In contrast, gut-innervating, GPR65-expressing vagal afferent stimulation increases hepatic glucose production and activates parabrachial neurons that control normoglycemia, but they are dispensable for feeding regulation. Thus, distinct gut-innervating sensory neurons differentially control feeding and glucoregulatory neurocircuits and may provide specific targets for metabolic control.


Asunto(s)
Regulación del Apetito , Eje Cerebro-Intestino/fisiología , Glucosa/metabolismo , Células Receptoras Sensoriales/fisiología , Vías Aferentes/metabolismo , Animales , Apetito/fisiología , Regulación del Apetito/genética , Comunicación Celular/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Receptor del Péptido 1 Similar al Glucagón/genética , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Masculino , Ratones Transgénicos , Ganglio Nudoso/metabolismo , Ganglio Nudoso/fisiología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Nervio Vago/metabolismo , Nervio Vago/fisiología , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
14.
Nat Metab ; 3(12): 1662-1679, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34931084

RESUMEN

Insulin acts on neurons and glial cells to regulate systemic glucose metabolism and feeding. However, the mechanisms of insulin access in discrete brain regions are incompletely defined. Here we show that insulin receptors in tanycytes, but not in brain endothelial cells, are required to regulate insulin access to the hypothalamic arcuate nucleus. Mice lacking insulin receptors in tanycytes (IR∆Tan mice) exhibit systemic insulin resistance, while displaying normal food intake and energy expenditure. Tanycytic insulin receptors are also necessary for the orexigenic effects of ghrelin, but not for the anorexic effects of leptin. IR∆Tan mice exhibit increased agouti-related peptide (AgRP) neuronal activity, while displaying blunted AgRP neuronal adaptations to feeding-related stimuli. Lastly, a highly palatable food decreases tanycytic and arcuate nucleus insulin signalling to levels comparable to those seen in IR∆Tan mice. These changes are rooted in modifications of cellular stress responses and of mitochondrial protein quality control in tanycytes. Conclusively, we reveal a critical role of tanycyte insulin receptors in gating feeding-state-dependent regulation of AgRP neurons and systemic insulin sensitivity, and show that insulin resistance in tanycytes contributes to the pleiotropic manifestations of obesity-associated insulin resistance.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Células Ependimogliales/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , Neuronas/metabolismo , Transducción de Señal , Proteína Relacionada con Agouti/química , Animales , Biomarcadores , Barrera Hematoencefálica/metabolismo , Calcio , Metabolismo Energético , Técnica del Anticuerpo Fluorescente , Ghrelina/metabolismo , Glucosa/metabolismo , Resistencia a la Insulina , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Modelos Biológicos , Fragmentos de Péptidos/metabolismo , Receptor de Insulina/metabolismo
15.
Mol Imaging ; 9(1): 40-6, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20128997

RESUMEN

We present two patients with glioblastoma with an unusually stable clinical course and long-term survival who were treated after surgery and radiotherapy with adjuvant temozolomide (TMZ) chemotherapy for 17 and 20 cycles, respectively. Afterward, adjuvant TMZ chemotherapy was discontinued in one patient and the dosage of TMZ was reduced in the other. In addition to clinical status and magnetic resonance imaging, the biologic activity of the tumors was monitored by repeated methyl-11C-l-methionine (MET) and 3'-deoxy-3'-18F-fluorothymidine (FLT) positron emission tomography (PET) studies in these patients. In these patients, repeated MET- and FLT-PET imaging documented complete response to the initial treatment regimen, including resection, radiation, and TMZ, and during the course of the disease, recurrent, uncontrollable tumor activity. Continuation or dose escalation of TMZ in both patients was shown to be ineffective to overcome the metabolic activity of the tumor. Our data suggest that repeated MET- and FLT-PET imaging provide information on the biologic activity of a tumor that is highly useful to monitor and detect changes in activity.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/tratamiento farmacológico , Dacarbazina/análogos & derivados , Glioblastoma/diagnóstico por imagen , Glioblastoma/tratamiento farmacológico , Radiofármacos , Adulto , Neoplasias Encefálicas/metabolismo , Radioisótopos de Carbono , Dacarbazina/uso terapéutico , Didesoxinucleósidos/farmacocinética , Radioisótopos de Flúor , Glioblastoma/metabolismo , Humanos , Metionina/análogos & derivados , Persona de Mediana Edad , Cintigrafía , Radiofármacos/farmacocinética , Temozolomida
16.
Cell Metab ; 31(6): 1189-1205.e13, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32433922

RESUMEN

Astrocytes represent central regulators of brain glucose metabolism and neuronal function. They have recently been shown to adapt their function in response to alterations in nutritional state through responding to the energy state-sensing hormones leptin and insulin. Here, we demonstrate that glucagon-like peptide (GLP)-1 inhibits glucose uptake and promotes ß-oxidation in cultured astrocytes. Conversely, postnatal GLP-1 receptor (GLP-1R) deletion in glial fibrillary acidic protein (GFAP)-expressing astrocytes impairs astrocyte mitochondrial integrity and activates an integrated stress response with enhanced fibroblast growth factor (FGF)21 production and increased brain glucose uptake. Accordingly, central neutralization of FGF21 or astrocyte-specific FGF21 inactivation abrogates the improvements in glucose tolerance and learning in mice lacking GLP-1R expression in astrocytes. Collectively, these experiments reveal a role for astrocyte GLP-1R signaling in maintaining mitochondrial integrity, and lack of GLP-1R signaling mounts an adaptive stress response resulting in an improvement of systemic glucose homeostasis and memory formation.


Asunto(s)
Astrocitos/metabolismo , Ácidos Grasos/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Mitocondrias/metabolismo , Animales , Femenino , Receptor del Péptido 1 Similar al Glucagón/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Oxidación-Reducción , Transducción de Señal
17.
Neuron ; 106(6): 1009-1025.e10, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32302532

RESUMEN

Calorie-rich diets induce hyperphagia and promote obesity, although the underlying mechanisms remain poorly defined. We find that short-term high-fat-diet (HFD) feeding of mice activates prepronociceptin (PNOC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC). PNOCARC neurons represent a previously unrecognized GABAergic population of ARC neurons distinct from well-defined feeding regulatory AgRP or POMC neurons. PNOCARC neurons arborize densely in the ARC and provide inhibitory synaptic input to nearby anorexigenic POMC neurons. Optogenetic activation of PNOCARC neurons in the ARC and their projections to the bed nucleus of the stria terminalis promotes feeding. Selective ablation of these cells promotes the activation of POMC neurons upon HFD exposure, reduces feeding, and protects from obesity, but it does not affect food intake or body weight under normal chow consumption. We characterize PNOCARC neurons as a novel ARC neuron population activated upon palatable food consumption to promote hyperphagia.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Dieta Alta en Grasa , Conducta Alimentaria/fisiología , Neuronas GABAérgicas/fisiología , Hiperfagia , Obesidad , Aumento de Peso/fisiología , Animales , Núcleo Arqueado del Hipotálamo/citología , Núcleo Arqueado del Hipotálamo/metabolismo , Neuronas GABAérgicas/metabolismo , Ratones , Inhibición Neural/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Optogenética , Proopiomelanocortina/metabolismo , Precursores de Proteínas/metabolismo , Receptores Opioides/metabolismo , Núcleos Septales/fisiología
18.
Cancer Med ; 9(14): 4991-5007, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32436621

RESUMEN

BACKGROUND: Treatment of patients with solid tumors and KRAS mutations remains disappointing. One option is the combined inhibition of pathways involved in RAF-MEK-ERK and PI3K-AKT-mTOR. METHODS: Patients with relapsed solid tumors were treated with escalating doses of everolimus (E) 2.5-10.0 mg/d in a 14-day run-in phase followed by combination therapy with sorafenib (S) 800 mg/d from day 15. KRAS mutational status was assessed retrospectively in the escalation phase. Extension phase included KRAS-mutated non-small-cell lung cancer (NSCLC) only. Pharmacokinetic analyses were accompanied by pharmacodynamics assessment of E by FDG-PET. Efficacy was assessed by CT scans every 6 weeks of combination. RESULTS: Of 31 evaluable patients, 15 had KRAS mutation, 4 patients were negative for KRAS mutation, and the KRAS status remained unknown in 12 patients. Dose-limiting toxicity (DLT) was not reached. The maximum tolerated dose (MTD) was defined as 7.5 mg/d E + 800 mg/d S due to toxicities at previous dose level (10 mg/d E + 800 mg/d S) including leucopenia/thrombopenia III° and pneumonia III° occurring after the DLT interval. The metabolic response rate in FDG-PET was 17% on day 5 and 20% on day 14. No patient reached partial response in CT scan. Median progression free survival (PFS) and overall survival (OS) were 3.25 and 5.85 months, respectively. CONCLUSIONS: Treatment of patients with relapsed solid tumors with 7.5 mg/d E and 800 mg/d S is safe and feasible. Early metabolic response in FDG-PET was not confirmed in CT scan several weeks later. The combination of S and E is obviously not sufficient to induce durable responses in patients with KRAS-mutant solid tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Everolimus/uso terapéutico , Fluorodesoxiglucosa F18/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Tomografía de Emisión de Positrones/métodos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sorafenib/uso terapéutico , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Everolimus/farmacología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sorafenib/farmacología
19.
Eur J Nucl Med Mol Imaging ; 36(12): 1960-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19672593

RESUMEN

PURPOSE: Compartmental modelling of 3'-deoxy-3'-[18F]-fluorothymidine (18F-FLT) PET-derived kinetics provides a method for noninvasive assessment of the proliferation rate of gliomas. Such analyses, however, require an input function generally derived by serial blood sampling and counting. In the current study, 18F-FLT kinetic parameters obtained from image-derived input functions were compared with those from input functions derived from arterialized blood samples. METHODS: Based on the analysis of 11 patients with glioma (WHO grade II-IV) a procedure for the automated extraction of an input function from 18F-FLT brain PET data was derived. The time-activity curve of the volume of interest with the maximum difference in 18F-FLT uptake during the first 5 min after injection and the period from 60 to 90 min was corrected for partial-volume effects and in vivo metabolism of 18F-FLT. For each patient a two-compartment kinetic model was applied to the tumour tissue using the image-derived input function. The resulting kinetic rate constants K1 (transport across the blood-brain barrier) and Ki (metabolic rate constant or net influx constant) were compared with those obtained from the same data using the input function derived from blood samples. Additionally, the metabolic rate constant was correlated with the frequency of tumour cells stained with Ki-67, a widely used immunohistochemical marker of cell proliferation. RESULTS: The rate constants from kinetic modelling were comparable when the blood sample-derived input functions were replaced by the image-derived functions (K1,img and K1,sample, r = 0.95, p < 10(-5); Ki,img and Ki,sample, r = 0.86, p < 0.001). A paired t-test showed no significant differences in the parameters derived with the two methods (K1,img and K1,sample, p = 0.20; Ki,img and Ki,sample, p = 0.92). Furthermore, a significant correlation between Ki,img and the percentage of Ki-67-positive cells was observed (r = 0.73, p = 0.01). CONCLUSION: Kinetic modelling of 18F-FLT brain PET data using image-derived input functions extracted from human brain PET data with the practical procedure described here provides information about the proliferative activity of brain tumours which might have clinical relevance especially for monitoring of therapy response in future clinical trials.


Asunto(s)
Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Encéfalo/diagnóstico por imagen , Didesoxinucleósidos , Glioma/diagnóstico por imagen , Glioma/patología , Tomografía de Emisión de Positrones , Arterias/fisiopatología , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/irrigación sanguínea , Neoplasias Encefálicas/metabolismo , Proliferación Celular , Didesoxinucleósidos/metabolismo , Glioma/irrigación sanguínea , Glioma/metabolismo , Humanos , Cinética , Modelos Biológicos , Reproducibilidad de los Resultados , Estudios Retrospectivos
20.
Am J Med Genet A ; 149A(12): 2832-7, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19938094

RESUMEN

The oromandibular limb hypogenesis syndromes (OLHS) represent a group of rare conditions characterized by congenital malformations involving the tongue, mandible, and limbs. There is considerable overlap between the syndromes gathered under the term OLHS, and a marked variability of face and limb anomalies as well as additional malformations. In this report we describe a girl with gastroschisis and pulmonary hypoplasia in addition to features of Moebius syndrome comprising hypoplasia of the tongue and mandible, brachydactyly of halluces, cranial nerve palsies with bilateral facial paralysis and an inability to execute horizontal eye movements. Karyotyping and array-based comparative genomic hybridization were normal. This observation confirms an overlap between Moebius syndrome and OLHS and widens the spectrum of associated malformations. Intrauterine environmental factors including vascular insufficiency, high maternal fever, and drug abuse are likely to play a crucial role in the pathogenesis of this condition.


Asunto(s)
Gastrosquisis/complicaciones , Deformidades Congénitas de las Extremidades/complicaciones , Pulmón/anomalías , Mandíbula/anomalías , Síndrome de Mobius/complicaciones , Adolescente , Femenino , Hallux/anomalías , Hallux/diagnóstico por imagen , Humanos , Lactante , Recién Nacido , Deformidades Congénitas de las Extremidades/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Embarazo , Radiografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA