Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Br J Dermatol ; 180(3): 604-614, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30307614

RESUMEN

BACKGROUND: Sun protection factor (SPF) is assessed with sunscreen applied at 2 mg cm-2 . People typically apply around 0·8 mg cm-2 and use sunscreen daily for holidays. Such use results in erythema, which is a risk factor for skin cancer. OBJECTIVES: To determine (i) whether typical sunscreen use resulted in erythema, epidermal DNA damage and photoimmunosuppression during a sunny holiday, (ii) whether optimal sunscreen use inhibited erythema and (iii) whether erythema is a biomarker for photoimmunosuppression in a laboratory study. METHODS: Holidaymakers (n = 22) spent a week in Tenerife (very high ultraviolet index) using their own sunscreens without instruction (typical sunscreen use). Others (n = 40) were given SPF 15 sunscreens with instructions on how to achieve the labelled SPF (sunscreen intervention). Personal ultraviolet radiation (UVR) exposure was monitored electronically as the standard erythemal dose (SED) and erythema was quantified. Epidermal cyclobutane pyrimidine dimers (CPDs) were determined by immunostaining, and immunosuppression was assessed by contact hypersensitivity (CHS) response. RESULTS: There was no difference between personal UVR exposure in the typical sunscreen use and sunscreen intervention groups (P = 0·08). The former had daily erythema on five UVR-exposed body sites, increased CPDs (P < 0·001) and complete CHS suppression (20 of 22). In comparison, erythema was virtually absent (P < 0·001) when sunscreens were used at ≥ 2 mg cm-2 . A laboratory study showed that 3 SED from three very different spectra suppressed CHS by around ~50%. CONCLUSIONS: Optimal sunscreen use prevents erythema during a sunny holiday. Erythema predicts suppression of CHS (implying a shared action spectrum). Given that erythema and CPDs share action spectra, the data strongly suggest that optimal sunscreen use will also reduce CPD formation and UVR-induced immunosuppression.


Asunto(s)
Eritema/prevención & control , Luz Solar/efectos adversos , Protectores Solares/administración & dosificación , Inmunidad Adaptativa/efectos de los fármacos , Inmunidad Adaptativa/efectos de la radiación , Adulto , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Eritema/etiología , Eritema/inmunología , Femenino , Vacaciones y Feriados , Humanos , Tolerancia Inmunológica/efectos de los fármacos , Tolerancia Inmunológica/efectos de la radiación , Masculino , Persona de Mediana Edad , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/prevención & control , España , Factor de Protección Solar , Protectores Solares/química
2.
Br J Dermatol ; 181(5): 1052-1062, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31069787

RESUMEN

BACKGROUND: Sunlight contains ultraviolet (UV)A and UVB radiation. UVB is essential for vitamin D synthesis but is the main cause of sunburn and skin cancer. Sunscreen use is advocated to reduce the sun's adverse effects but may compromise vitamin D status. OBJECTIVES: To assess the ability of two intervention sunscreens to inhibit vitamin D synthesis during a week-long sun holiday. METHODS: The impact of sunscreens on vitamin D status was studied during a 1-week sun holiday in Tenerife (28° N). Comparisons were made between two formulations, each with a sun protection factor (SPF) of 15. The UVA-protection factor (PF) was low in one case and high in the other. Healthy Polish volunteers (n = 20 per group) were given the sunscreens and advised on the correct application. Comparisons were also made with discretionary sunscreen use (n = 22) and nonholiday groups (51·8° N, n = 17). Sunscreen use in the intervention groups was measured. Behaviour, UV radiation exposure, clothing cover and sunburn were monitored. Serum 25-hydroxyvitamin D3 [25(OH)D3 ] was assessed by high-performance liquid chromatography-tandem mass spectrometry. RESULTS: Use of intervention sunscreens was the same (P = 0·60), and both equally inhibited sunburn, which was present in the discretionary use group. There was an increase (P < 0·001) in mean ± SD 25(OH)D3 (28·0 ± 16·5 nmol L-1 ) in the discretionary use group. The high and low UVA-PF sunscreen groups showed statistically significant increases (P < 0·001) of 19·0 ± 14·2 and 13·0 ± 11·4 nmol L-1 25(OH)D3 , respectively with P = 0·022 for difference between the intervention sunscreens. The nonholiday group showed a fall (P = 0·08) of 2·5 ± 5·6 nmol L-1 25(OH)D3 . CONCLUSIONS: Sunscreens may be used to prevent sunburn yet allow vitamin D synthesis. A high UVA-PF sunscreen enables significantly higher vitamin D synthesis than a low UVA-PF sunscreen because the former, by default, transmits more UVB than the latter. What's already known about this topic? Action spectra (wavelength dependence) for erythema and the cutaneous formation of vitamin D overlap considerably in the ultraviolet (UV)B region. Theoretically, sunscreens that inhibit erythema should also inhibit vitamin D synthesis. To date, studies on the inhibitory effects of sunscreens on vitamin D synthesis have given conflicting results, possibly, in part, because people typically apply sunscreen suboptimally. Many studies have design flaws. What does this study add? Sunscreens (sun protection factor, SPF 15) applied at sufficient thickness to inhibit sunburn during a week-long holiday with a very high UV index still allow a highly significant improvement of serum 25-hydroxyvitamin D3 concentration. An SPF 15 formulation with high UVA protection enables better vitamin D synthesis than a low UVA protection product. The former allows more UVB transmission.


Asunto(s)
Calcifediol/metabolismo , Piel/efectos de los fármacos , Quemadura Solar/prevención & control , Luz Solar/efectos adversos , Protectores Solares/administración & dosificación , Administración Cutánea , Adulto , Calcifediol/sangre , Femenino , Voluntarios Sanos , Vacaciones y Feriados , Humanos , Masculino , Persona de Mediana Edad , Polonia , Piel/metabolismo , Piel/efectos de la radiación , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/prevención & control , España , Factor de Protección Solar , Quemadura Solar/etiología , Protectores Solares/química , Resultado del Tratamiento , Rayos Ultravioleta/efectos adversos
3.
Photochem Photobiol Sci ; 18(1): 120-128, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30357230

RESUMEN

Assessment of ultraviolet (UV) exposure is essential for evaluation of the risks and benefits to optimise public health outcomes. The exposure depends on available environmental UV radiation and individual behaviour, and it can be obtained from dosimetry studies; however, the use of dosimeters is often not feasible for large population groups or over long periods of time. In this study, a lifestyle questionnaire has been used to obtain information on the time spent outdoors by indoor workers that could be used in combination with dosimetry studies in smaller targeted groups to quantify UV exposure for health risk/benefit analysis. 894 office and laboratory workers at the Public Health England, UK, responded to the survey. Questions addressed the time of day and the duration of time; staff were outdoors on weekdays, at weekends and during holidays. The majority of the responders spent negligible time outdoors on weekdays. Outdoor activities before and after work were constrained by the work pattern and commuting. The average time for those who go outdoors before and after commuting was 22.5 ± 16.2 min and 30.4 ± 21.4 min, respectively. Only 7% of participants regularly spent their lunch break outdoors for 21.5 ± 12.2 min and weekday exposure may contribute less than 13% of the daily available erythema dose. At the weekend, on average responders spend 5.0 ± 2.6 h outdoors over the two days: if taken around midday, it accounts for approximately 50% of available UV exposure. In winter months in the UK, November to March, the combination of very low environmental UV and low ambient temperatures results in negligible UV exposure. Holidays contributed to the majority of the annual UV exposure. In summer, 45% of responders went to destinations where the UV levels may be up to 2 times higher than in the UK; durations of overseas holidays are also longer than UK breaks. The UV dose from two weeks of holiday in extreme UV index level destinations could be comparable to a 1.5-2 summer months holiday in the UK. The survey data were validated with 6 months of dosimetry within the same cohort; very strong and strong correlation was found between the survey and measurements. This shows that a lifestyle survey can be used in combination with targeted dosimetry studies in small groups to obtain information about the time spent outdoors.

4.
Radiat Prot Dosimetry ; 163(3): 387-93, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24920570

RESUMEN

The methods of the dark signal determination by direct contemporaneous measurements using a light spectrum and modelling of the dark signal based on the dark signal characterisation data were discussed. These techniques were tested with two charge-couple detectors (CCD) array spectroradiometers used in solar UVR measurements. The sensitivity of both instruments was significantly reduced when shutters were used; the measured signal varied by up to 12% depending on the orientation of the shutter. The shutters should be permanently attached to the SSR, so that the orientation cannot be changed to prevent an increase in uncertainty. The method of using blind pixels from the optically inactive part of the CCD array in a light spectrum could be used to derive the dark signal with some limitations for integration times <10 s for the QE65000. An alternative method of deriving the dark signal from light measurements using out-of-range pixels has been proved impossible due to out-of-range stray light in both instruments. The dark signal was characterised for the range of integration times and ambient temperatures of 15-35°C. Based on these data, the model of the dark signal was developed so that a single value of the dark signal can be subtracted over the whole spectral range if the instrument temperature is known.


Asunto(s)
Algoritmos , Radiometría/instrumentación , Semiconductores , Energía Solar , Análisis Espectral/instrumentación , Rayos Ultravioleta , Radiación de Fondo , Diseño de Equipo , Análisis de Falla de Equipo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA