Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Cell ; 186(19): 4172-4188.e18, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37633267

RESUMEN

Selective clearance of organelles, including endoplasmic reticulum (ER) and mitochondria, by autophagy plays an important role in cell health. Here, we describe a developmentally programmed selective ER clearance by autophagy. We show that Parkinson's disease-associated PINK1, as well as Atl, Rtnl1, and Trp1 receptors, regulate ER clearance by autophagy. The E3 ubiquitin ligase Parkin functions downstream of PINK1 and is required for mitochondrial clearance while having the opposite function in ER clearance. By contrast, Keap1 and the E3 ubiquitin ligase Cullin3 function downstream of PINK1 to regulate ER clearance by influencing Rtnl1 and Atl. PINK1 regulates a change in Keap1 localization and Keap1-dependent ubiquitylation of the ER-phagy receptor Rtnl1 to facilitate ER clearance. Thus, PINK1 regulates the selective clearance of ER and mitochondria by influencing the balance of Keap1- and Parkin-dependent ubiquitylation of substrates that determine which organelle is removed by autophagy.


Asunto(s)
Retículo Endoplásmico , Factor 2 Relacionado con NF-E2 , Retículo Endoplásmico/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Proteínas Quinasas , Ubiquitina-Proteína Ligasas , Drosophila melanogaster , Animales
2.
Cell ; 170(1): 158-171.e8, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666117

RESUMEN

Autophagy degrades cytoplasmic components and is important for development and human health. Although autophagy is known to be influenced by systemic intercellular signals, the proteins that control autophagy are largely thought to function within individual cells. Here, we report that Drosophila macroglobulin complement-related (Mcr), a complement ortholog, plays an essential role during developmental cell death and inflammation by influencing autophagy in neighboring cells. This function of Mcr involves the immune receptor Draper, suggesting a relationship between autophagy and the control of inflammation. Interestingly, Mcr function in epithelial cells is required for macrophage autophagy and migration to epithelial wounds, a Draper-dependent process. This study reveals, unexpectedly, that complement-related from one cell regulates autophagy in neighboring cells via an ancient immune signaling program.


Asunto(s)
Autofagia , Proteínas del Sistema Complemento/inmunología , Drosophila melanogaster/crecimiento & desarrollo , Animales , Citocinas , Proteínas de Drosophila , Drosophila melanogaster/citología , Drosophila melanogaster/inmunología , Inflamación/inmunología , Larva/crecimiento & desarrollo , Larva/inmunología , Macrófagos/inmunología , Glándulas Salivales/citología , Glándulas Salivales/crecimiento & desarrollo , Glándulas Salivales/metabolismo , Serpinas
3.
Cell ; 148(1-2): 17-8, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22265396

RESUMEN

Programmed necrosis has long been recognized as a crucial component of animal development; however, the signaling pathway beyond the protein kinases RIP1 and RIP3 remains largely unknown. Sun et al. and Wang et al. now identify critical factors downstream of RIP1 and RIP3 in programmed necrosis, extending our understanding of this form of cell death.

4.
Nat Rev Mol Cell Biol ; 15(2): 81-94, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24401948

RESUMEN

Autophagy and apoptosis control the turnover of organelles and proteins within cells, and of cells within organisms, respectively, and many stress pathways sequentially elicit autophagy, and apoptosis within the same cell. Generally autophagy blocks the induction of apoptosis, and apoptosis-associated caspase activation shuts off the autophagic process. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis or necrosis, and autophagy has been shown to degrade the cytoplasm excessively, leading to 'autophagic cell death'. The dialogue between autophagy and cell death pathways influences the normal clearance of dying cells, as well as immune recognition of dead cell antigens. Therefore, the disruption of the relationship between autophagy and apoptosis has important pathophysiological consequences.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis/genética , Autofagia/genética , Transducción de Señal/genética , Proteínas Reguladoras de la Apoptosis/genética , Caspasas/genética , Caspasas/metabolismo , Humanos , Necrosis/genética , Orgánulos/metabolismo
5.
EMBO J ; 40(19): e108863, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459017

RESUMEN

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Asunto(s)
Autofagia , Susceptibilidad a Enfermedades , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Autofagia/inmunología , Biomarcadores , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Especificidad de Órganos , Transducción de Señal
6.
Cell ; 141(6): 922-4, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20550928

RESUMEN

Most autophagy genes have been discovered in the single-celled yeast Saccharomyces cerevisiae, and little is known about autophagy genes that are specific to multicellular animals. In this issue, Tian et al. (2010) now identify four new autophagy genes: one specific to the nematode Caenorhabditis elegans and three conserved from worms to mammals.

7.
Cell ; 136(2): 207-8, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19167322

RESUMEN

Cellular determinants of the germline selectively accumulate in germ cell precursors and influence cell fate during early development in many organisms. Zhang et al. (2009) now report that targeted autophagy mediated by the SEPA-1 protein depletes germplasm proteins from somatic cells during early development of the nematode.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/embriología , Proteínas Portadoras/metabolismo , Animales , Autofagia , Caenorhabditis elegans/metabolismo , Gránulos Citoplasmáticos/metabolismo , Células Germinativas/metabolismo
8.
Dev Biol ; 481: 104-115, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34648816

RESUMEN

Pulses of the steroid hormone ecdysone act through transcriptional cascades to direct the major developmental transitions during the Drosophila life cycle. These include the prepupal ecdysone pulse, which occurs 10 â€‹hours after pupariation and triggers the onset of adult morphogenesis and larval tissue destruction. E93 encodes a transcription factor that is specifically induced by the prepupal pulse of ecdysone, supporting a model proposed by earlier work that it specifies the onset of adult development. Although a number of studies have addressed these functions for E93, little is known about its roles in the salivary gland where the E93 locus was originally identified. Here we show that E93 is required for development through late pupal stages, with mutants displaying defects in adult differentiation and no detectable effect on the destruction of larval salivary glands. RNA-seq analysis demonstrates that E93 regulates genes involved in development and morphogenesis in the salivary glands, but has little effect on cell death gene expression. We also show that E93 is required to direct the proper timing of ecdysone-regulated gene expression in salivary glands, and that it suppresses earlier transcriptional programs that occur during larval and prepupal stages. These studies support the model that the stage-specific induction of E93 in late prepupae provides a critical signal that defines the end of larval development and the onset of adult differentiation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Ecdisona/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Metamorfosis Biológica/efectos de los fármacos , Factores de Transcripción/metabolismo , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Ecdisona/metabolismo , Larva , Factores de Transcripción/genética
9.
Mol Cell ; 56(3): 376-388, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25306920

RESUMEN

Macroautophagy (autophagy) is a lysosome-dependent degradation process that has been implicated in age-associated diseases. Autophagy is involved in both cell survival and cell death, but little is known about the mechanisms that distinguish its use during these distinct cell fates. Here, we identify the microRNA miR-14 as being both necessary and sufficient for autophagy during developmentally regulated cell death in Drosophila. Loss of miR-14 prevented induction of autophagy during salivary gland cell death, but had no effect on starvation-induced autophagy in the fat body. Moreover, misexpression of miR-14 was sufficient to prematurely induce autophagy in salivary glands, but not in the fat body. Importantly, miR-14 regulates this context-specific autophagy through its target, inositol 1,4,5-trisphosphate kinase 2 (ip3k2), thereby affecting inositol 1,4,5-trisphosphate (IP3) signaling and calcium levels during salivary gland cell death. This study provides in vivo evidence of microRNA regulation of autophagy through modulation of IP3 signaling.


Asunto(s)
Autofagia , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , MicroARNs/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Animales , Calcio/metabolismo , Línea Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Inositol 1,4,5-Trifosfato/metabolismo , Larva/citología , Larva/enzimología , Larva/crecimiento & desarrollo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Interferencia de ARN , Glándulas Salivales/citología , Sistemas de Mensajero Secundario
10.
EMBO J ; 36(13): 1811-1836, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28596378

RESUMEN

Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy-related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy-related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.


Asunto(s)
Autofagia , Terminología como Asunto , Animales , Caenorhabditis elegans/fisiología , Drosophila melanogaster/fisiología , Redes Reguladoras de Genes , Ratones , Saccharomyces cerevisiae/fisiología
11.
EMBO J ; 34(7): 856-80, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25712477

RESUMEN

Autophagy plays a key role in the maintenance of cellular homeostasis. In healthy cells, such a homeostatic activity constitutes a robust barrier against malignant transformation. Accordingly, many oncoproteins inhibit, and several oncosuppressor proteins promote, autophagy. Moreover, autophagy is required for optimal anticancer immunosurveillance. In neoplastic cells, however, autophagic responses constitute a means to cope with intracellular and environmental stress, thus favoring tumor progression. This implies that at least in some cases, oncogenesis proceeds along with a temporary inhibition of autophagy or a gain of molecular functions that antagonize its oncosuppressive activity. Here, we discuss the differential impact of autophagy on distinct phases of tumorigenesis and the implications of this concept for the use of autophagy modulators in cancer therapy.


Asunto(s)
Autofagia , Transformación Celular Neoplásica/metabolismo , Neoplasias/metabolismo , Animales , Transformación Celular Neoplásica/inmunología , Transformación Celular Neoplásica/patología , Humanos , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Escape del Tumor , Proteínas Supresoras de Tumor/inmunología , Proteínas Supresoras de Tumor/metabolismo
12.
EMBO Rep ; 17(1): 110-21, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26598552

RESUMEN

Autophagy traffics cellular components to the lysosome for degradation. Ral GTPase and the exocyst have been implicated in the regulation of stress-induced autophagy, but it is unclear whether they are global regulators of this process. Here, we investigate Ral function in different cellular contexts in Drosophila and find that it is required for autophagy during developmentally regulated cell death in salivary glands, but does not affect starvation-induced autophagy in the fat body. Furthermore, knockdown of exocyst subunits has a similar effect, preventing autophagy in dying cells but not in cells of starved animals. Notch activity is elevated in dying salivary glands, this change in Notch signaling is influenced by Ral, and decreased Notch function influences autophagy. These data indicate that Ral and the exocyst regulate autophagy in a context-dependent manner, and that in dying salivary glands, Ral mediates autophagy, at least in part, by regulation of Notch.


Asunto(s)
Autofagia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo , Animales , Muerte Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Cuerpo Adiposo , Regulación de la Expresión Génica , Receptores Notch/genética , Receptores Notch/metabolismo , Glándulas Salivales/citología , Glándulas Salivales/fisiología , Inanición , Estrés Fisiológico
13.
Development ; 140(6): 1321-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23406899

RESUMEN

Atg6 (beclin 1 in mammals) is a core component of the Vps34 complex that is required for autophagy. Beclin 1 (Becn1) functions as a tumor suppressor, and Becn1(+/-) tumors in mice possess elevated cell stress and p62 levels, altered NF-κB signaling and genome instability. The tumor suppressor function of Becn1 has been attributed to its role in autophagy, and the potential functions of Atg6/Becn1 in other vesicle trafficking pathways for tumor development have not been considered. Here, we generate Atg6 mutant Drosophila and demonstrate that Atg6 is essential for autophagy, endocytosis and protein secretion. By contrast, the core autophagy gene Atg1 is required for autophagy and protein secretion, but it is not required for endocytosis. Unlike null mutants of other core autophagy genes, all Atg6 mutant animals possess blood cell masses. Atg6 mutants have enlarged lymph glands (the hematopoietic organ in Drosophila), possess elevated blood cell numbers, and the formation of melanotic blood cell masses in these mutants is not suppressed by mutations in either p62 or NFκB genes. Thus, like mammals, altered Atg6 function in flies causes hematopoietic abnormalities and lethality, and our data indicate that this is due to defects in multiple membrane trafficking processes.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster , Hematopoyesis/genética , Vesículas Transportadoras/genética , Proteínas de Transporte Vesicular/fisiología , Animales , Animales Modificados Genéticamente , Autofagia/genética , Beclina-1 , Transporte Biológico/genética , Transporte Biológico/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Epistasis Genética/fisiología , Hematopoyesis/fisiología , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Transporte de Proteínas/genética , Vías Secretoras/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Vesículas Transportadoras/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
15.
Nature ; 465(7301): 1093-6, 2010 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-20577216

RESUMEN

Autophagy degrades cytoplasmic components that are required for cell survival in response to starvation. Autophagy has also been associated with cell death, but it is unclear how this is distinguished from autophagy during cell survival. Drosophila salivary glands undergo programmed cell death that requires autophagy genes, and engulfment of salivary gland cells by phagocytes does not appear to occur. Here we show that Draper (Drpr), the Drosophila melanogaster orthologue of the Caenorhabditis elegans engulfment receptor CED-1, is required for autophagy during cell death. Null mutations in, and salivary gland-specific knockdown of, drpr inhibit salivary gland degradation. Knockdown of drpr prevents the induction of autophagy in dying salivary glands, and expression of the Atg1 autophagy regulator in drpr mutants suppresses the failure in degradation of salivary glands. Surprisingly, drpr is required in the same dying salivary gland cells in which it regulates autophagy induction, but drpr knockdown does not prevent starvation-induced autophagy in the fat body, which is associated with survival. In addition, components of the conserved engulfment pathway are required for clearance of dying salivary glands. To our knowledge, this is the first example of an engulfment factor that is required for self-clearance of cells. Further, Drpr is the first factor that distinguishes autophagy that is associated with cell death from autophagy associated with cell survival.


Asunto(s)
Autofagia/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Animales Modificados Genéticamente , Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia , Proteínas Relacionadas con la Autofagia , Caspasas/metabolismo , Muerte Celular/fisiología , Supervivencia Celular , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Cuerpo Adiposo/citología , Privación de Alimentos , Genes de Insecto/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Glándulas Salivales/citología , Glándulas Salivales/metabolismo
16.
Nature ; 465(7300): 942-6, 2010 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-20526321

RESUMEN

Autophagy is an evolutionarily conserved process by which cytoplasmic proteins and organelles are catabolized. During starvation, the protein TOR (target of rapamycin), a nutrient-responsive kinase, is inhibited, and this induces autophagy. In autophagy, double-membrane autophagosomes envelop and sequester intracellular components and then fuse with lysosomes to form autolysosomes, which degrade their contents to regenerate nutrients. Current models of autophagy terminate with the degradation of the autophagosome cargo in autolysosomes, but the regulation of autophagy in response to nutrients and the subsequent fate of the autolysosome are poorly understood. Here we show that mTOR signalling in rat kidney cells is inhibited during initiation of autophagy, but reactivated by prolonged starvation. Reactivation of mTOR is autophagy-dependent and requires the degradation of autolysosomal products. Increased mTOR activity attenuates autophagy and generates proto-lysosomal tubules and vesicles that extrude from autolysosomes and ultimately mature into functional lysosomes, thereby restoring the full complement of lysosomes in the cell-a process we identify in multiple animal species. Thus, an evolutionarily conserved cycle in autophagy governs nutrient sensing and lysosome homeostasis during starvation.


Asunto(s)
Autofagia/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Fenómenos Fisiológicos de la Nutrición , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular , Chlorocebus aethiops , Células HeLa , Homeostasis/fisiología , Humanos , Lisosomas/ultraestructura , Ratas , Transducción de Señal , Serina-Treonina Quinasas TOR , Células Vero
17.
Proc Natl Acad Sci U S A ; 109(8): 2949-54, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22308414

RESUMEN

Hormonal control of sexual maturation is a common feature in animal development. A particularly dramatic example is the metamorphosis of insects, in which pulses of the steroid hormone ecdysone drive the wholesale transformation of the larva into an adult. The mechanisms responsible for this transformation are not well understood. Work in Drosophila indicates that the larval and adult forms are patterned by the same underlying sets of developmental regulators, but it is not understood how the same regulators pattern two distinct forms. Recent studies indicate that this ability is facilitated by a global change in the responsiveness of target genes during metamorphosis. Here we show that this shift is controlled in part by the ecdysone-induced transcription factor E93. Although long considered a dedicated regulator of larval cell death, we find that E93 is expressed widely in adult cells at the pupal stage and is required for many patterning processes at this time. To understand the role of E93 in adult patterning, we focused on a simple E93-dependent process, the induction of the Dll gene within bract cells of the pupal leg by EGF receptor signaling. In this system, we show that E93 functions to cause Dll to become responsive to EGF receptor signaling. We demonstrate that E93 is both necessary and sufficient for directing this switch. E93 likely controls the responsiveness of many other target genes because it is required broadly for patterning during metamorphosis. The wide conservation of E93 orthologs suggests that similar mechanisms control life-cycle transitions in other organisms, including vertebrates.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Genes de Insecto/genética , Metamorfosis Biológica/efectos de los fármacos , Metamorfosis Biológica/genética , Esteroides/farmacología , Factores de Transcripción/genética , Envejecimiento/efectos de los fármacos , Envejecimiento/genética , Alelos , Animales , Tipificación del Cuerpo/efectos de los fármacos , Tipificación del Cuerpo/genética , Codón sin Sentido/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Receptores ErbB/metabolismo , Extremidades , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/metabolismo , Modelos Biológicos , Fenotipo , Pupa/citología , Pupa/efectos de los fármacos , Pupa/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Alas de Animales/efectos de los fármacos , Alas de Animales/crecimiento & desarrollo , Proteínas ras/metabolismo
18.
Proc Natl Acad Sci U S A ; 108(19): 7826-31, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21518918

RESUMEN

Autophagy is a conserved cellular process to degrade and recycle cytoplasmic components. During autophagy, lysosomes fuse with an autophagosome to form an autolysosome. Sequestered components are degraded by lysosomal hydrolases and presumably released into the cytosol by lysosomal efflux permeases. Following starvation-induced autophagy, lysosome homeostasis is restored by autophagic lysosome reformation (ALR) requiring activation of the "target of rapamycin" (TOR) kinase. Spinster (Spin) encodes a putative lysosomal efflux permease with the hallmarks of a sugar transporter. Drosophila spin mutants accumulate lysosomal carbohydrates and enlarged lysosomes. Here we show that defects in spin lead to the accumulation of enlarged autolysosomes. We find that spin is essential for mTOR reactivation and lysosome reformation following prolonged starvation. Further, we demonstrate that the sugar transporter activity of Spin is essential for ALR.


Asunto(s)
Autofagia/fisiología , Proteínas de Drosophila/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Metabolismo de los Hidratos de Carbono , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Técnicas de Silenciamiento del Gen , Genes de Insecto , Humanos , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Ratones , Datos de Secuencia Molecular , Mutación , Interferencia de ARN , Ratas , Homología de Secuencia de Aminoácido
19.
J Mol Biol ; 436(15): 168473, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38311234

RESUMEN

Autophagy is used to degrade cytoplasmic materials, and is critical to maintain cell and organismal health in diverse animals. Here we discuss the regulation, utilization and impact of autophagy on development, including roles in oogenesis, spermatogenesis and embryogenesis in animals. We also describe how autophagy influences postembryonic development in the context of neuronal and cardiac development, wound healing, and tissue regeneration. We describe recent studies of selective autophagy during development, including mitochondria-selective autophagy and endoplasmic reticulum (ER)-selective autophagy. Studies of developing model systems have also been used to discover novel regulators of autophagy, and we explain how studies of autophagy in these physiologically relevant systems are advancing our understanding of this important catabolic process.


Asunto(s)
Autofagia , Desarrollo Embrionario , Animales , Humanos , Mitocondrias/metabolismo , Oogénesis , Retículo Endoplásmico/metabolismo , Espermatogénesis
20.
Nat Cell Biol ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424270

RESUMEN

Ferroptosis, an intricately regulated form of cell death characterized by uncontrolled lipid peroxidation, has garnered substantial interest since this term was first coined in 2012. Recent years have witnessed remarkable progress in elucidating the detailed molecular mechanisms that govern ferroptosis induction and defence, with particular emphasis on the roles of heterogeneity and plasticity. In this Review, we discuss the molecular ecosystem of ferroptosis, with implications that may inform and enable safe and effective therapeutic strategies across a broad spectrum of diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA