Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Development ; 137(3): 427-35, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20056680

RESUMEN

The Necl/SynCAM subgroup of immunoglobulin superfamily cell adhesion molecules has been implicated in late stages of neural circuit formation. They were shown to be sufficient for synaptogenesis by their trans-synaptic interactions. Additionally, they are involved in myelination, both in the central and the peripheral nervous system, by mediating adhesion between glia cells and axons. Here, we show that Necls/SynCAMs are also required for early stages of neural circuit formation. We demonstrate a role for Necls/SynCAMs in post-crossing commissural axon guidance in the developing spinal cord in vivo. Necl3/SynCAM2, the family member that has not been characterized functionally so far, plays a crucial role in this process. It is expressed by floorplate cells and interacts with Necls/SynCAMs expressed by commissural axons to mediate a turning response in post-crossing commissural axons.


Asunto(s)
Axones/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Animales , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Embrión de Pollo , Nectinas , Fibras Nerviosas Mielínicas , Neurogénesis , Médula Espinal/embriología , Médula Espinal/fisiología
2.
J Neurosci ; 31(41): 14463-80, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21994363

RESUMEN

Directed cell migration and axonal guidance are essential steps in neural development. Both processes are controlled by specific guidance cues that activate the signaling cascades that ultimately control cytoskeletal dynamics. Another essential step in migration and axonal guidance is the regulation of plasmalemma turnover and exocytosis in leading edges and growth cones. However, the cross talk mechanisms linking guidance receptors and membrane exocytosis are not understood. Netrin-1 is a chemoattractive cue required for the formation of commissural pathways. Here, we show that the Netrin-1 receptor deleted in colorectal cancer (DCC) forms a protein complex with the t-SNARE (target SNARE) protein Syntaxin-1 (Sytx1). This interaction is Netrin-1 dependent both in vitro and in vivo, and requires specific Sytx1 and DCC domains. Blockade of Sytx1 function by using botulinum toxins abolished Netrin-1-dependent chemoattraction of axons in mouse neuronal cultures. Similar loss-of-function experiments in the chicken spinal cord in vivo using dominant-negative Sytx1 constructs or RNAi led to defects in commissural axon pathfinding reminiscent to those described in Netrin-1 and DCC loss-of-function models. We also show that Netrin-1 elicits exocytosis at growth cones in a Sytx1-dependent manner. Moreover, we demonstrate that the Sytx1/DCC complex associates with the v-SNARE (vesicle SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) and that knockdown of TI-VAMP in the commissural pathway in the spinal cord results in aberrant axonal guidance phenotypes. Our data provide evidence of a new signaling mechanism that couples chemotropic Netrin-1/DCC axonal guidance and Sytx1/TI-VAMP SNARE proteins regulating membrane turnover and exocytosis.


Asunto(s)
Exocitosis/fisiología , Conos de Crecimiento/fisiología , Factores de Crecimiento Nervioso/metabolismo , Neuronas/citología , Receptores de Superficie Celular/metabolismo , Proteínas SNARE/metabolismo , Transducción de Señal/genética , Proteínas Supresoras de Tumor/metabolismo , Análisis de Varianza , Animales , Animales Recién Nacidos , Axones/efectos de los fármacos , Axones/fisiología , Compuestos de Boro/metabolismo , Toxinas Botulínicas Tipo A/farmacología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Cultivadas , Quimiotaxis/efectos de los fármacos , Chlorocebus aethiops , Complemento C1/farmacología , Receptor DCC , Embrión de Mamíferos , Exocitosis/efectos de los fármacos , Exocitosis/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Conos de Crecimiento/efectos de los fármacos , Factores de Intercambio de Guanina Nucleótido/metabolismo , Hipocampo/citología , Humanos , Inmunoprecipitación , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Munc18/genética , Proteínas Munc18/metabolismo , Factores de Crecimiento Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Netrina-1 , Fármacos Neuromusculares/farmacología , Técnicas de Cultivo de Órganos , Receptores de Superficie Celular/genética , Proteínas SNARE/genética , Transducción de Señal/efectos de los fármacos , Resonancia por Plasmón de Superficie/métodos , Toxina Tetánica/farmacología , Transfección/métodos , Proteínas Supresoras de Tumor/genética , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
3.
Front Neurosci ; 16: 894962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35794952

RESUMEN

The importance of cell adhesion molecules for the development of the nervous system has been recognized many decades ago. Functional in vitro and in vivo studies demonstrated a role of cell adhesion molecules in cell migration, axon growth and guidance, as well as synaptogenesis. Clearly, cell adhesion molecules have to be more than static glue making cells stick together. During axon guidance, cell adhesion molecules have been shown to act as pathway selectors but also as a means to prevent axons going astray by bundling or fasciculating axons. We identified Endoglycan as a negative regulator of cell-cell adhesion during commissural axon guidance across the midline. The presence of Endoglycan allowed commissural growth cones to smoothly navigate the floor-plate area. In the absence of Endoglycan, axons failed to exit the floor plate and turn rostrally. These observations are in line with the idea of Endoglycan acting as a lubricant, as its presence was important, but it did not matter whether Endoglycan was provided by the growth cone or the floor-plate cells. Here, we expand on these observations by demonstrating a role of Endoglycan during cell migration. In the developing cerebellum, Endoglycan was expressed by Purkinje cells during their migration from the ventricular zone to the periphery. In the absence of Endoglycan, Purkinje cells failed to migrate and, as a consequence, cerebellar morphology was strongly affected. Cerebellar folds failed to form and grow, consistent with earlier observations on a role of Purkinje cells as Shh deliverers to trigger granule cell proliferation.

4.
J Neurosci ; 30(33): 11167-76, 2010 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-20720124

RESUMEN

After midline crossing, axons of dorsolateral commissural neurons turn rostrally into the longitudinal axis of the spinal cord. In mouse, the graded distribution of Wnt4 attracts post-crossing axons rostrally. In contrast, in the chicken embryo, the graded distribution of Sonic hedgehog (Shh) guides post-crossing axons by a repulsive mechanism mediated by hedgehog-interacting protein. Based on these observations, we tested for a possible cooperation between the two types of morphogens. Indeed, we found that Wnts also act as axon guidance cues in the chicken spinal cord. However, in contrast to the mouse, Wnt transcription did not differ along the anteroposterior axis of the spinal cord. Rather, Wnt function was regulated by a gradient of the Wnt antagonist Sfrp1 (Secreted frizzled-related protein 1) that in turn was shaped by the Shh gradient. Thus, Shh affects post-crossing axon guidance both directly and indirectly by regulating Wnt function.


Asunto(s)
Proteínas Aviares/metabolismo , Axones/fisiología , Proteínas Hedgehog/metabolismo , Médula Espinal/embriología , Médula Espinal/fisiología , Proteínas Wnt/metabolismo , Animales , Células COS , Movimiento Celular/fisiología , Quimiotaxis , Embrión de Pollo , Chlorocebus aethiops , Técnicas de Cocultivo
5.
Elife ; 102021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33650489

RESUMEN

Axon navigation depends on the interactions between guidance molecules along the trajectory and specific receptors on the growth cone. However, our in vitro and in vivo studies on the role of Endoglycan demonstrate that in addition to specific guidance cue - receptor interactions, axon guidance depends on fine-tuning of cell-cell adhesion. Endoglycan, a sialomucin, plays a role in axon guidance in the central nervous system of chicken embryos, but it is neither an axon guidance cue nor a receptor. Rather, Endoglycan acts as a negative regulator of molecular interactions based on evidence from in vitro experiments demonstrating reduced adhesion of growth cones. In the absence of Endoglycan, commissural axons fail to properly navigate the midline of the spinal cord. Taken together, our in vivo and in vitro results support the hypothesis that Endoglycan acts as a negative regulator of cell-cell adhesion in commissural axon guidance.


Asunto(s)
Orientación del Axón/fisiología , Conos de Crecimiento/fisiología , Mucinas/farmacología , Animales , Axones/fisiología , Adhesión Celular/efectos de los fármacos , Embrión de Pollo , Células HEK293 , Humanos , Interferencia de ARN , Médula Espinal/embriología
6.
Nat Neurosci ; 8(3): 297-304, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15746914

RESUMEN

Dorsal commissural axons in the developing spinal cord cross the floor plate, then turn rostrally and grow along the longitudinal axis, close to the floor plate. We used a subtractive hybridization approach to identify guidance cues responsible for the rostral turn in chicken embryos. One of the candidates was the morphogen Sonic hedgehog (Shh). Silencing of the gene SHH (which encodes Shh) by in ovo RNAi during commissural axon navigation demonstrated a repulsive role in post-commissural axon guidance. This effect of Shh was not mediated by Patched (Ptc) and Smoothened (Smo), the receptors that mediate effects of Shh in morphogenesis and commissural axon growth toward the floor plate. Rather, functional in vivo studies showed that the repulsive effect of Shh on postcommissural axons was mediated by Hedgehog interacting protein (Hip).


Asunto(s)
Axones/fisiología , Tipificación del Cuerpo/fisiología , Embrión de Mamíferos/citología , Embrión no Mamífero , Médula Espinal/citología , Médula Espinal/embriología , Transactivadores/fisiología , Factores de Edad , Animales , Carbocianinas/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Línea Celular , Embrión de Pollo , Clonación Molecular/métodos , Diagnóstico por Imagen/métodos , Inducción Embrionaria , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog , Hibridomas , Hibridación in Situ/métodos , Técnicas In Vitro , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , ARN sin Sentido/farmacología , ARN Interferente Pequeño , Alcaloides de Veratrum/farmacología
7.
Methods Mol Biol ; 442: 231-44, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18369789

RESUMEN

The analysis of gene function during embryonic development asks for tight temporal control of gene expression. Classic genetic tools do not allow for this, as the absence of a gene during the early stages of development will preclude its functional analysis during later stages. In contrast, RNAi technology allows one to achieve temporal control of gene silencing especially when used with oviparous animal models. In contrast to mammals, reptiles and birds are easily accessible during embryonic development. We have developed approaches to use RNAi for the analysis of gene function during nervous system development in the chicken embryo. Although the protocol given here describes a method for gene silencing in the developing spinal cord, it can easily be adapted to other parts of the developing nervous system. The combination of the easy accessibility of the chicken embryo and RNAi provides a unique opportunity for temporal and spatial control of gene silencing during development.


Asunto(s)
Electroporación , Silenciador del Gen , Interferencia de ARN , Animales , Embrión de Pollo , Electroporación/métodos , Fenotipo , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Médula Espinal/anatomía & histología , Médula Espinal/embriología , Médula Espinal/fisiología , Factores de Tiempo
8.
Neural Dev ; 3: 7, 2008 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-18346270

RESUMEN

BACKGROUND: Neural development consists of a series of steps, including neurogenesis, patterning, cell migration, axon guidance, and finally, synaptogenesis. Because all these steps proceed in a constantly changing environment, functional gene analyses during development have to take time into account. This is quite challenging, however, as loss-of-function approaches based on classic genetic tools do not allow for the precise temporal control that is required for developmental studies. Gene silencing by RNA interference (RNAi) in combination with the chicken embryo or with cultured embryos opens new possibilities for functional gene analysis in vivo. Axonin-1/TAG-1 is a cell adhesion molecule of the immunoglobulin superfamily with a well defined temporal and spatial expression pattern in the developing vertebrate nervous system. Axonin-1/TAG-1 was shown to promote neurite outgrowth in vitro and to be required for commissural and sensory axon pathfinding in vivo. RESULTS: To knock down axonin-1 in a temporally and spatially controlled manner during development of the nervous system, we have combined RNAi with the accessibility of the chicken embryo even at late stages of development. Using ex ovo RNAi, we analyzed the function of axonin-1/TAG-1 in cerebellar development. Axonin-1 is expressed in postmitotic granule cells while they extend their processes, the parallel fibers. In the absence of axonin-1 these processes still extend but no longer in a parallel manner to each other or to the pial surface of the cerebellum. CONCLUSION: Axonin-1/TAG-1 is required for the navigation, but not for the elongation, of granule cell processes in the developing cerebellum in vivo.


Asunto(s)
Axones/fisiología , Moléculas de Adhesión Celular Neuronal/genética , Cerebelo/citología , Cerebelo/embriología , Células Receptoras Sensoriales/fisiología , Animales , Apoptosis/fisiología , Moléculas de Adhesión Celular Neuronal/metabolismo , Cerebelo/fisiología , Embrión de Pollo , Pollos , Contactina 2 , Regulación hacia Abajo/fisiología , Electroporación , Regulación del Desarrollo de la Expresión Génica , Interferencia de ARN , Células Receptoras Sensoriales/ultraestructura
9.
CSH Protoc ; 2008: pdb.prot5094, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21356740

RESUMEN

INTRODUCTIONIn ovo RNA interference (RNAi) is a method for silencing a gene of interest using a combination of in ovo injection and electroporation in avian embryos. Here we describe gene silencing in the developing spinal cord, but the procedure can easily be adapted to other parts of the nervous system. Double-stranded RNA (dsRNA) derived from the gene of interest is injected into the developing spinal cord of the chicken embryo, and is followed by electroporation to allow for the uptake of the dsRNA. With this method, temporal as well as spatial control of gene silencing is possible. The time point of injection should be chosen according to the expression profile of the gene or the half-life of the protein. Proteins with slow turnover may require RNAi at earlier stages, ideally before the onset of gene expression. The electroporation parameters can be adjusted such that only a specific population of neurons is targeted in the spinal cord.

10.
J RNAi Gene Silencing ; 2(1): 126-35, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-19771214

RESUMEN

Loss-of-function approaches are important tools for functional gene analysis. Due to the availability of sophisticated methods to manipulate gene expression in embryonic stem cells that can be used to generate mutant mice, the mouse is by far the most important vertebrate model organism for basic and applied biomedical research. Unfortunately, the available methods do not allow for precise temporal and spatial control of gene silencing during embryonic development limiting the usefulness of the mouse for developmental studies. Due to their easy accessibility chicken embryos have been one of the preferred model organisms for developmental studies. Their disadvantage, the lack of genetic tools, could be overcome by the development of in ovo RNAi (in ovo RNA interference), a method that allows for temporal and spatial control of gene silencing in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA