Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Genet ; 18(7): e1010305, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35789210

RESUMEN

Circadian clocks enable organisms to predict and align their behaviors and physiologies to constant daily day-night environmental cycle. Because the ubiquitin ligase Siah2 has been identified as a potential regulator of circadian clock function in cultured cells, we have used SIAH2-deficient mice to examine its function in vivo. Our experiments demonstrate a striking and unexpected sexually dimorphic effect of SIAH2-deficiency on the regulation of rhythmically expressed genes in the liver. The absence of SIAH2 in females, but not in males, altered the expression of core circadian clock genes and drastically remodeled the rhythmic transcriptome in the liver by increasing the number of day-time expressed genes, and flipping the rhythmic expression from nighttime expressed genes to the daytime. These effects are not readily explained by effects on known sexually dimorphic pathways in females. Moreover, loss of SIAH2 in females, not males, preferentially altered the expression of transcription factors and genes involved in regulating lipid and lipoprotein metabolism. Consequently, SIAH2-deficient females, but not males, displayed disrupted daily lipid and lipoprotein patterns, increased adiposity and impaired metabolic homeostasis. Overall, these data suggest that SIAH2 may be a key component of a female-specific circadian transcriptional output circuit that directs the circadian timing of gene expression to regulate physiological rhythms, at least in the liver. In turn, our findings imply that sex-specific transcriptional mechanisms may closely interact with the circadian clock to tailor overt rhythms for sex-specific needs.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Femenino , Lípidos , Lipoproteínas , Masculino , Ratones , Ubiquitina , Ubiquitina-Proteína Ligasas/genética
2.
Hum Mol Genet ; 28(1): 16-30, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30215740

RESUMEN

Polycystin-1 (PC1), encoded by the PKD1 gene that is mutated in the autosomal dominant polycystic kidney disease, regulates a number of processes including bone development. Activity of the transcription factor RunX2, which controls osteoblast differentiation, is reduced in Pkd1 mutant mice but the mechanism governing PC1 activation of RunX2 is unclear. PC1 undergoes regulated cleavage that releases its C-terminal tail (CTT), which translocates to the nucleus to modulate transcriptional pathways involved in proliferation and apoptosis. We find that the cleaved CTT of PC1 (PC1-CTT) stimulates the transcriptional coactivator TAZ (Wwtr1), an essential coactivator of RunX2. PC1-CTT physically interacts with TAZ, stimulating RunX2 transcriptional activity in pre-osteoblast cells in a TAZ-dependent manner. The PC1-CTT increases the interaction between TAZ and RunX2 and enhances the recruitment of the p300 transcriptional co-regulatory protein to the TAZ/RunX2/PC1-CTT complex. Zebrafish injected with morpholinos directed against pkd1 manifest severe bone calcification defects and a curly tail phenotype. Injection of messenger RNA (mRNA) encoding the PC1-CTT into pkd1-morphant fish restores bone mineralization and reduces the severity of the curly tail phenotype. These effects are abolished by co-injection of morpholinos directed against TAZ. Injection of mRNA encoding a dominant-active TAZ construct is sufficient to rescue both the curly tail phenotype and the skeletal defects observed in pkd1-morpholino treated fish. Thus, TAZ constitutes a key mechanistic link through which PC1 mediates its physiological functions.


Asunto(s)
Desarrollo Óseo/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Canales Catiónicos TRPP/fisiología , Animales , Apoptosis , Desarrollo Óseo/fisiología , Diferenciación Celular , Proteína p300 Asociada a E1A/fisiología , Regulación de la Expresión Génica , Genes Reguladores , Células HEK293 , Humanos , Riñón/metabolismo , Modelos Animales , Morfolinos , Osteoblastos/metabolismo , Osteogénesis/fisiología , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Pez Cebra/genética , Proteínas de Pez Cebra/genética
3.
J Biol Chem ; 293(15): 5478-5491, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29475951

RESUMEN

Syntaxins are a conserved family of SNARE proteins and contain C-terminal transmembrane anchors required for their membrane fusion activity. Here we show that Stx3 (syntaxin 3) unexpectedly also functions as a nuclear regulator of gene expression. We found that alternative splicing creates a soluble isoform that we termed Stx3S, lacking the transmembrane anchor. Soluble Stx3S binds to the nuclear import factor RanBP5 (RAN-binding protein 5), targets to the nucleus, and interacts physically and functionally with several transcription factors, including ETV4 (ETS variant 4) and ATF2 (activating transcription factor 2). Stx3S is differentially expressed in normal human tissues, during epithelial cell polarization, and in breast cancer versus normal breast tissue. Inhibition of endogenous Stx3S expression alters the expression of cancer-associated genes and promotes cell proliferation. Similar nuclear-targeted, soluble forms of other syntaxins were identified, suggesting that nuclear signaling is a conserved, novel function common among these membrane-trafficking proteins.


Asunto(s)
Proteínas E1A de Adenovirus/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Regulación de la Expresión Génica , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Qa-SNARE/metabolismo , Transducción de Señal , beta Carioferinas/metabolismo , Proteínas E1A de Adenovirus/genética , Animales , Células COS , Células CACO-2 , Núcleo Celular/genética , Chlorocebus aethiops , Perros , Células HEK293 , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-ets , Proteínas Qa-SNARE/genética , Solubilidad , beta Carioferinas/genética
4.
PLoS Biol ; 13(7): e1002200, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26196739

RESUMEN

The protozoan parasite, Toxoplasma, like many intracellular pathogens, suppresses interferon gamma (IFN-γ)-induced signal transducer and activator of transcription 1 (STAT1) activity. We exploited this well-defined host-pathogen interaction as the basis for a high-throughput screen, identifying nine transcription factors that enhance STAT1 function in the nucleus, including the orphan nuclear hormone receptor TLX. Expression profiling revealed that upon IFN-γ treatment TLX enhances the output of a subset of IFN-γ target genes, which we found is dependent on TLX binding at those loci. Moreover, infection of TLX deficient mice with the intracellular parasite Toxoplasma results in impaired production of the STAT1-dependent cytokine interleukin-12 by dendritic cells and increased parasite burden in the brain during chronic infection. These results demonstrate a previously unrecognized role for this orphan nuclear hormone receptor in regulating STAT1 signaling and host defense and reveal that STAT1 activity can be modulated in a context-specific manner by such "modifiers."


Asunto(s)
Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Receptores Citoplasmáticos y Nucleares/metabolismo , Factor de Transcripción STAT1/metabolismo , Toxoplasma/inmunología , Animales , Encéfalo/metabolismo , Infecciones del Sistema Nervioso Central/metabolismo , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/metabolismo , Enfermedad Crónica , Interferón gamma/metabolismo , Ratones Endogámicos CBA
5.
Proc Natl Acad Sci U S A ; 112(40): 12420-5, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26392558

RESUMEN

Regulated degradation of proteins by the proteasome is often critical to their function in dynamic cellular pathways. The molecular clock underlying mammalian circadian rhythms relies on the rhythmic expression and degradation of its core components. However, because the tools available for identifying the mechanisms underlying the degradation of a specific protein are limited, the mechanisms regulating clock protein degradation are only beginning to be elucidated. Here we describe a cell-based functional screening approach designed to quickly identify the ubiquitin E3 ligases that induce the degradation of potentially any protein of interest. We screened the nuclear hormone receptor RevErbα (Nr1d1), a key constituent of the mammalian circadian clock, for E3 ligases that regulate its stability and found Seven in absentia2 (Siah2) to be a key regulator of RevErbα stability. Previously implicated in hypoxia signaling, Siah2 overexpression destabilizes RevErbα/ß, and siRNA depletion of Siah2 stabilizes endogenous RevErbα. Moreover, Siah2 depletion delays circadian degradation of RevErbα and lengthens period length. These results demonstrate the utility of functional screening approaches for identifying regulators of protein stability and reveal Siah2 as a previously unidentified circadian clockwork regulator that mediates circadian RevErbα turnover.


Asunto(s)
Relojes Circadianos/genética , Proteínas Nucleares/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Western Blotting , Línea Celular , Línea Celular Tumoral , Células Cultivadas , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Expresión Génica , Humanos , Ratones , Microscopía Fluorescente , Proteínas Nucleares/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteolisis , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitina-Proteína Ligasas/metabolismo
6.
PLoS Biol ; 12(4): e1001840, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24737000

RESUMEN

Over the last decades, researchers have characterized a set of "clock genes" that drive daily rhythms in physiology and behavior. This arduous work has yielded results with far-reaching consequences in metabolic, psychiatric, and neoplastic disorders. Recent attempts to expand our understanding of circadian regulation have moved beyond the mutagenesis screens that identified the first clock components, employing higher throughput genomic and proteomic techniques. In order to further accelerate clock gene discovery, we utilized a computer-assisted approach to identify and prioritize candidate clock components. We used a simple form of probabilistic machine learning to integrate biologically relevant, genome-scale data and ranked genes on their similarity to known clock components. We then used a secondary experimental screen to characterize the top candidates. We found that several physically interact with known clock components in a mammalian two-hybrid screen and modulate in vitro cellular rhythms in an immortalized mouse fibroblast line (NIH 3T3). One candidate, Gene Model 129, interacts with BMAL1 and functionally represses the key driver of molecular rhythms, the BMAL1/CLOCK transcriptional complex. Given these results, we have renamed the gene CHRONO (computationally highlighted repressor of the network oscillator). Bi-molecular fluorescence complementation and co-immunoprecipitation demonstrate that CHRONO represses by abrogating the binding of BMAL1 to its transcriptional co-activator CBP. Most importantly, CHRONO knockout mice display a prolonged free-running circadian period similar to, or more drastic than, six other clock components. We conclude that CHRONO is a functional clock component providing a new layer of control on circadian molecular dynamics.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Relojes Circadianos/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/metabolismo , Histona Desacetilasas/metabolismo , Proteínas Represoras/metabolismo , Células 3T3 , Secuencia de Aminoácidos , Animales , Inteligencia Artificial , Línea Celular , Relojes Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Péptidos y Proteínas de Señalización del Ritmo Circadiano/biosíntesis , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética , Criptocromos/genética , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Represoras/biosíntesis , Proteínas Represoras/genética , Alineación de Secuencia , Transcripción Genética/genética
7.
Proc Natl Acad Sci U S A ; 109(38): 15348-53, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22949635

RESUMEN

Endoderm-mesenchyme cross-talk is a central process in the development of foregut-derived organs. How signaling pathways integrate the activity of multiple ligands to guide organ development is poorly understood. We show that two Wnt ligands, Wnt2 and Wnt7b, cooperatively induce Wnt signaling without affecting the stabilization of the Wnt canonical effector ß-catenin despite it being necessary for Wnt2-Wnt7b cooperativity. Wnt2-Wnt7b cooperation is specific for mesenchymal cell lineages and the combined loss of Wnt2 and Wnt7b leads to more severe developmental defects in the lung than loss of Wnt2 or Wnt7b alone. High-throughput small-molecule screens and biochemical assays reveal that the Pdgf pathway is required for cooperative Wnt2-Wnt7b signaling. Inhibition of Pdgf signaling in cell culture reduces Wnt2-Wnt7b cooperative signaling. Moreover, inhibition of Pdgf signaling in lung explant cultures results in decreased Wnt signaling and lung smooth-muscle development. These data suggest a model in which Pdgf signaling potentiates Wnt2-Wnt7b signaling to promote high levels of Wnt activity in mesenchymal progenitors that is required for proper development of endoderm-derived organs, such as the lung.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Mucosa Intestinal/metabolismo , Intestinos/embriología , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Wnt/metabolismo , Proteína wnt2/metabolismo , Animales , Línea Celular , Linaje de la Célula , Epitelio/metabolismo , Humanos , Ligandos , Pulmón/metabolismo , Mesodermo/metabolismo , Ratones , Miocitos del Músculo Liso/metabolismo , Organogénesis/genética , Transducción de Señal
8.
Nat Genet ; 38(3): 312-9, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16474406

RESUMEN

Direct evidence for the requirement of transcriptional feedback repression in circadian clock function has been elusive. Here, we developed a molecular genetic screen in mammalian cells to identify mutants of the circadian transcriptional activators CLOCK and BMAL1, which were uncoupled from CRYPTOCHROME (CRY)-mediated transcriptional repression. Notably, mutations in the PER-ARNT-SIM domain of CLOCK and the C terminus of BMAL1 resulted in synergistic insensitivity through reduced physical interactions with CRY. Coexpression of these mutant proteins in cultured fibroblasts caused arrhythmic phenotypes in population and single-cell assays. These data demonstrate that CRY-mediated repression of the CLOCK/BMAL1 complex activity is required for maintenance of circadian rhythmicity and provide formal proof that transcriptional feedback is required for mammalian clock function.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica , Transactivadores/genética , Células 3T3 , Factores de Transcripción ARNTL , Animales , Proteínas CLOCK , Línea Celular , Retroalimentación , Genes Reporteros , Humanos , Luciferasas/análisis , Luciferasas/genética , Luminiscencia , Ratones , Plásmidos , Tiempo
9.
Annu Rev Pharmacol Toxicol ; 50: 187-214, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20055702

RESUMEN

The physiology of a wide variety of organisms is organized according to periodic environmental changes imposed by the earth's rotation. This way, a large number of physiological processes present diurnal rhythms regulated by an internal timing system called the circadian clock. As part of the rhythmicity in physiology, drug efficacy and toxicity can vary with time. Studies over the past four decades present diurnal oscillations in drug absorption, distribution, metabolism, and excretion. On the other hand, diurnal variations in the availability and sensitivity of drug targets have been correlated with time-dependent changes in drug effectiveness. In this review, we provide evidence supporting the regulation of drug kinetics and dynamics by the circadian clock. We also use the examples of hypertension and cancer to show current achievements and challenges in chronopharmacology.


Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano , Farmacocinética , Farmacología , Factores de Transcripción ARNTL/genética , Animales , Presión Sanguínea , Proteínas CLOCK/genética , GMP Cíclico/biosíntesis , Humanos , Hipertensión/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Óxido Nítrico/biosíntesis , Sistema Renina-Angiotensina/efectos de los fármacos , Núcleo Supraquiasmático/fisiología
10.
PLoS Biol ; 7(3): e52, 2009 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-19278294

RESUMEN

The mammalian circadian clock is a cell-autonomous system that drives oscillations in behavior and physiology in anticipation of daily environmental change. To assess the robustness of a human molecular clock, we systematically depleted known clock components and observed that circadian oscillations are maintained over a wide range of disruptions. We developed a novel strategy termed Gene Dosage Network Analysis (GDNA) in which small interfering RNA (siRNA)-induced dose-dependent changes in gene expression were used to build gene association networks consistent with known biochemical constraints. The use of multiple doses powered the analysis to uncover several novel network features of the circadian clock, including proportional responses and signal propagation through interacting genetic modules. We also observed several examples where a gene is up-regulated following knockdown of its paralog, suggesting the clock network utilizes active compensatory mechanisms rather than simple redundancy to confer robustness and maintain function. We propose that these network features act in concert as a genetic buffering system to maintain clock function in the face of genetic and environmental perturbation.


Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Mamíferos/genética , Animales , Duplicación de Gen , Técnicas de Silenciamiento del Gen , Humanos , Mamíferos/fisiología , Ratones , Ratones Noqueados , Modelos Animales , Modelos Genéticos , ARN Interferente Pequeño , Transducción de Señal
11.
PLoS Genet ; 5(4): e1000442, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19343201

RESUMEN

The circadian clock is a molecular and cellular oscillator found in most mammalian tissues that regulates rhythmic physiology and behavior. Numerous investigations have addressed the contribution of circadian rhythmicity to cellular, organ, and organismal physiology. We recently developed a method to look at transcriptional oscillations with unprecedented precision and accuracy using high-density time sampling. Here, we report a comparison of oscillating transcription from mouse liver, NIH3T3, and U2OS cells. Several surprising observations resulted from this study, including a 100-fold difference in the number of cycling transcripts in autonomous cellular models of the oscillator versus tissues harvested from intact mice. Strikingly, we found two clusters of genes that cycle at the second and third harmonic of circadian rhythmicity in liver, but not cultured cells. Validation experiments show that 12-hour oscillatory transcripts occur in several other peripheral tissues as well including heart, kidney, and lungs. These harmonics are lost ex vivo, as well as under restricted feeding conditions. Taken in sum, these studies illustrate the importance of time sampling with respect to multiple testing, suggest caution in use of autonomous cellular models to study clock output, and demonstrate the existence of harmonics of circadian gene expression in the mouse.


Asunto(s)
Ritmo Circadiano , Hígado/fisiología , Mamíferos/genética , Transcripción Genética , Animales , Línea Celular , Células Cultivadas , Expresión Génica , Humanos , Masculino , Mamíferos/fisiología , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH
12.
Bioinformatics ; 24(23): 2794-5, 2008 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18931366

RESUMEN

UNLABELLED: Oscillations in mRNA and protein of circadian clock components can be continuously monitored in vitro using synchronized cell lines. These rhythms can be highly variable due to culture conditions and are non-stationary due to baseline trends, damping and drift in period length. We present a technique for characterizing the modal frequencies of oscillation using continuous wavelet decomposition to non-parametrically model changes in amplitude and period while removing baseline effects and noise. AVAILABILITY: The method has been implemented as the package waveclock for the free statistical software program R and is available for download from http://cran.r-project.org/


Asunto(s)
Ritmo Circadiano/fisiología , Biología Computacional/métodos , Algoritmos , Animales , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
13.
Curr Opin Genet Dev ; 15(6): 634-9, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16226457

RESUMEN

Comparative genomics approaches are having a remarkable impact on the study of transcriptional regulation in eukaryotes. Many eukaryotic genome sequences are being explored by new computational methods and high-throughput experimental tools such as DNA arrays and genome-wide location analyses. These tools are enabling efficient panning for common regulatory cassettes underlying fundamental biological processes, extending the use of existing techniques for the discovery of response elements to mammals, deciphering the transcriptional regulatory code in eukaryotes and providing the first global insights into a recently described post-transcriptional regulatory mechanism. Collectively, these approaches are rapidly expanding both our knowledge and our definition of transcriptional regulation.


Asunto(s)
Células Eucariotas/fisiología , Regulación de la Expresión Génica/genética , Genómica , Transcripción Genética/genética , Animales , Regulación de la Expresión Génica/fisiología , Humanos , Transcripción Genética/fisiología
14.
Curr Biol ; 13(3): 189-98, 2003 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-12573214

RESUMEN

BACKGROUND: Different types of regulation are utilized to produce a robust circadian clock, including regulation at the transcriptional, posttranscriptional, and translational levels. A screen for rhythmic messages that may be involved in such circadian control identified nocturnin, a novel gene that displays high-amplitude circadian expression in the Xenopus laevis retina, with peak mRNA levels in the early night. Expression of nocturnin mRNA is confined to the clock-containing photoreceptor cell layer within the retina. RESULTS: In these studies, we show that nocturnin removes the poly(A) tail from a synthetic RNA substrate in a process known as deadenylation. Nocturnin nuclease activity is magnesium dependent, as the addition of EDTA or mutation of the residue predicted to bind magnesium disrupts deadenylation. Substrate preference studies show that nocturnin is an exonuclease that specifically degrades the 3' poly(A) tail. While nocturnin is rhythmically expressed in the cytoplasm of the retinal photoreceptor cells, the only other described vertebrate deadenylase, PARN, is constitutively present in most retinal cells, including the photoreceptors. CONCLUSIONS: The distinct spatial and temporal expression of nocturnin and PARN suggests that there may be specific mRNA targets of each deadenylase. Since deadenylation regulates mRNA decay and/or translational silencing, we propose that nocturnin deadenylates clock-related transcripts in a novel mechanism for posttranscriptional regulation in the circadian clock or its outputs.


Asunto(s)
Ritmo Circadiano/fisiología , Regulación de la Expresión Génica , Proteínas/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , Retina/enzimología , Animales , Relojes Biológicos/fisiología , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Humanos , Magnesio/metabolismo , Proteínas Nucleares , Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/metabolismo , Factores de Transcripción , Xenopus laevis
15.
Methods Mol Biol ; 317: 243-54, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16264233

RESUMEN

Within the retina there is a circadian clock that controls the 24-h timing of processes such as hormone release, cell movement, and gene transcription. In an effort to better understand the molecular nature of this retinal clock, a differential display (DD) screen was performed to isolate a gene with high amplitude circadian rhythmicity in the Xenopus retina. A novel gene expressed in the early evening in photoreceptor cells was isolated and named nocturnin for night factor. This article outlines the steps we took to study a protein of unknown function, particularly highlighting the analyses one can perform when little more than the primary sequence of a gene is known. In addition, we describe the results of sequence analysis that assisted in predicting the function of nocturnin. We have shown that nocturnin acts as a deadenylase in vitro, removing the poly(A) tail from a mature messenger RNA in a process that either leads to degradation or translational silencing of a message. Although the role of nocturnin in the retina is unknown, future studies to identify target mRNAs that are deadenylated by nocturnin will assist in elucidating its physiological role in this tissue.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Proteínas/genética , Proteínas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Ritmo Circadiano , Ácido Edético/química , Proteínas Fluorescentes Verdes/metabolismo , Técnicas In Vitro , Proteínas Nucleares , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína , Proteínas/química , ARN Mensajero/metabolismo , Retina/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción , Transcripción Genética , Xenopus
16.
Cell Rep ; 9(5): 1885-1895, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25466249

RESUMEN

Loss of Pax3, a developmentally regulated transcription factor expressed in premigratory neural crest, results in severe developmental defects and embryonic lethality. Although Pax3 mutations produce profound phenotypes, the intrinsic transcriptional activation exhibited by Pax3 is surprisingly modest. We postulated the existence of transcriptional coactivators that function with Pax3 to mediate developmental functions. A high-throughput screen identified the Hippo effector proteins Taz and Yap65 as Pax3 coactivators. Synergistic coactivation of target genes by Pax3-Taz/Yap65 requires DNA binding by Pax3, is Tead independent, and is regulated by Hippo kinases Mst1 and Lats2. In vivo, Pax3 and Yap65 colocalize in the nucleus of neural crest progenitors in the dorsal neural tube. Neural crest deletion of Taz and Yap65 results in embryo-lethal neural crest defects and decreased expression of the Pax3 target gene, Mitf. These results suggest that Pax3 activity is regulated by the Hippo pathway and that Pax factors are Hippo effectors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Melanocitos/metabolismo , Cresta Neural/citología , Factores de Transcripción Paired Box/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Genes Reporteros , Células HEK293 , Vía de Señalización Hippo , Humanos , Luciferasas/biosíntesis , Luciferasas/genética , Ratones Transgénicos , Factor de Transcripción PAX3 , Fosforilación , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Activación Transcripcional
17.
PLoS One ; 8(1): e55782, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23383281

RESUMEN

Previous studies have demonstrated that certain Wnt ligands can promote high levels of cooperative signaling in a cell type specific manner. To explore the underlying mechanism of this cooperative Wnt signaling, we performed a high-throughput screen of more than 14,000 cDNAs to identify genes that promote cooperative Wnt signaling in the context of a single Wnt ligand, Wnt2. This screen identified several homeobox factors including Msx2, Nkx5.2, and Esx1, in addition to other factors known to promote Wnt signaling including Pias4. Generation of dominant-active or dominant-negative forms of Msx2 indicate that the mechanism by which homeobox factors cooperatively promote Wnt signaling is through their ability to repress gene transcription. These data identify a broad homeobox code, which acts to increase Wnt signaling through transcriptional repression.


Asunto(s)
Genómica , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Línea Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica/métodos , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Ligandos , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
18.
Dev Cell ; 22(1): 197-210, 2012 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-22178500

RESUMEN

Mutations in Pkd1, encoding polycystin-1 (PC1), cause autosomal-dominant polycystic kidney disease (ADPKD). We show that the carboxy-terminal tail (CTT) of PC1 is released by γ-secretase-mediated cleavage and regulates the Wnt and CHOP pathways by binding the transcription factors TCF and CHOP, disrupting their interaction with the common transcriptional coactivator p300. Loss of PC1 causes increased proliferation and apoptosis, while reintroducing PC1-CTT into cultured Pkd1 null cells reestablishes normal growth rate, suppresses apoptosis, and prevents cyst formation. Inhibition of γ-secretase activity impairs the ability of PC1 to suppress growth and apoptosis and leads to cyst formation in cultured renal epithelial cells. Expression of the PC1-CTT is sufficient to rescue the dorsal body curvature phenotype in zebrafish embryos resulting from either γ-secretase inhibition or suppression of Pkd1 expression. Thus, γ-secretase-dependent release of the PC1-CTT creates a protein fragment whose expression is sufficient to suppress ADPKD-related phenotypes in vitro and in vivo.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Apoptosis , Factores de Transcripción TCF/metabolismo , Canales Catiónicos TRPP/fisiología , Factor de Transcripción CHOP/metabolismo , Pez Cebra/metabolismo , Factores de Transcripción p300-CBP/genética , Animales , Proliferación Celular , Células Cultivadas , Quistes/etiología , Quistes/metabolismo , Quistes/patología , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Riñón/metabolismo , Riñón/patología , Fenotipo , Riñón Poliquístico Autosómico Dominante/fisiopatología , Factores de Transcripción TCF/genética , Canales Catiónicos TRPP/antagonistas & inhibidores , Factor de Transcripción CHOP/genética , Activación Transcripcional , Vía de Señalización Wnt , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Factores de Transcripción p300-CBP/metabolismo
19.
Curr Opin Genet Dev ; 20(6): 581-7, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20926286

RESUMEN

The circadian clock is an endogenous oscillator that regulates daily rhythms in behavior and physiology. In recent years, systems biology and genomics approaches re-shaped our view of the clock. Our understanding of outputs that regulate behavior and physiology has been enhanced through gene expression profiling and proteomic analyses. Systems approaches uncovered underlying principles of transcriptional regulation and robustness of the oscillator through perturbation analysis and synthetic methods. Finally, new clock components and modifiers were identified through cell-based screening efforts and proteomics.


Asunto(s)
Ritmo Circadiano , Genómica , Biología de Sistemas , Animales , Humanos
20.
Artículo en Inglés | MEDLINE | ID: mdl-20836017

RESUMEN

The conventional target centric model of drug discovery is pinned under the weight of prior success and the traditional problems of safety and efficacy for new molecules. An alternative to target centric drug development is to shift focus to the pathways that mediate both biology and pathophysiology. This method has the advantage of not requiring a priori knowledge of the small molecule target, but also comes with it several challenges including target determination. We suggest extending this notion more broadly across the drug discovery process using quantitative network structure-activity relationships (QNSAR), and discuss the steps necessary to test the hypothesis that systems biology approaches can be used to improve the drug discovery process.


Asunto(s)
Descubrimiento de Drogas , Biología de Sistemas , Algoritmos , Química Farmacéutica/métodos , Genoma Humano , Genómica , Humanos , Proteómica , Relación Estructura-Actividad Cuantitativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA