Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Plant Physiol ; 185(2): 405-423, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33721904

RESUMEN

In plants, root hairs undergo a highly polarized form of cell expansion called tip-growth, in which cell wall deposition is restricted to the root hair apex. In order to identify essential cellular components that might have been missed in earlier genetic screens, we identified conditional temperature-sensitive (ts) root hair mutants by ethyl methanesulfonate mutagenesis in Arabidopsis thaliana. Here, we describe one of these mutants, feronia-temperature sensitive (fer-ts). Mutant fer-ts seedlings were unaffected at normal temperatures (20°C), but failed to form root hairs at elevated temperatures (30°C). Map based-cloning and whole-genome sequencing revealed that fer-ts resulted from a G41S substitution in the extracellular domain of FERONIA (FER). A functional fluorescent fusion of FER containing the fer-ts mutation localized to plasma membranes, but was subject to enhanced protein turnover at elevated temperatures. While tip-growth was rapidly inhibited by addition of rapid alkalinization factor 1 (RALF1) peptides in both wild-type and fer-ts mutants at normal temperatures, root elongation of fer-ts seedlings was resistant to added RALF1 peptide at elevated temperatures. Additionally, at elevated temperatures fer-ts seedlings displayed altered reactive oxygen species (ROS) accumulation upon auxin treatment and phenocopied constitutive fer mutant responses to a variety of plant hormone treatments. Molecular modeling and sequence comparison with other Catharanthus roseus receptor-like kinase 1L (CrRLK1L) receptor family members revealed that the mutated glycine in fer-ts is highly conserved, but is not located within the recently characterized RALF23 and LORELI-LIKE-GLYCOPROTEIN 2 binding domains, perhaps suggesting that fer-ts phenotypes may not be directly due to loss of binding to RALF1 peptides.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Fosfotransferasas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Transducción de Señal , Alelos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/farmacología , Membrana Celular/metabolismo , Pared Celular/metabolismo , Ácidos Indolacéticos/farmacología , Mutación , Hormonas Peptídicas/farmacología , Fenotipo , Fosfotransferasas/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Dominios Proteicos , Especies Reactivas de Oxígeno/metabolismo , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/parasitología , Temperatura
2.
Plant Cell Environ ; 37(5): 1202-22, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24313737

RESUMEN

Although heat-shock transcription factors are well characterized in the heat stress-related pathway, they are poorly understood in other stress responses. Here, we functionally characterized AtHsfA6a in the presence of exogenous abscisic acid (ABA) and under high salinity and dehydration conditions. AtHsfA6a expression under normal conditions is very low, but was highly induced by exogenous ABA, NaCl and drought. Unexpectedly, the levels of AtHsfA6a transcript were not significantly altered under heat and cold stresses. Electrophoretic mobility shift assays and transient transactivation assays indicated that AtHsfA6a is transcriptionally regulated by ABA-responsive element binding factor/ABA-responsive element binding protein, which are key regulators of the ABA signalling pathway. Additionally, fractionation and protoplast transient assays showed that AtHsfA6a was in cytoplasm and nucleus simultaneously; however, under conditions of high salinity the majority of AtHsfA6A was in the nucleus. Furthermore, at both seed germination and seedlings stage, plants overexpressing AtHsfA6a were hypersensitive to ABA and exhibited enhanced tolerance against salt and drought stresses. Finally, the microarray and qRT-PCR analyses revealed that many stress-responsive genes were up-regulated in the plants overexpressing AtHsfA6a. Taken together, the data strongly suggest that AtHsfA6a acts as a transcriptional activator of stress-responsive genes via the ABA-dependent signalling pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Unión al ADN/metabolismo , Salinidad , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , ADN Bacteriano/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Deshidratación , Sequías , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Factores de Transcripción del Choque Térmico , Mutagénesis Insercional/genética , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/citología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
3.
Plant J ; 71(1): 122-34, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22380942

RESUMEN

The Spo0B-associated GTP-binding protein (Obg) GTPase, essential for bacterial viability, is also conserved in eukaryotes, but its primary role in eukaryotes remains unknown. Here, our functional characterization of Arabidopsis and rice obgc mutants strongly underlines the evolutionarily conserved role of eukaryotic Obgs in organellar ribosome biogenesis. The mutants exhibited a chlorotic phenotype, caused by retarded chloroplast development. A plastid DNA macroarray revealed a plastid-encoded RNA polymerase (PEP) deficiency in an obgc mutant, caused by incompleteness of the PEP complex, as its western blot exhibited reduced levels of RpoA protein, a component of PEP. Plastid rRNA profiling indicated that plastid rRNA processing is defective in obgc mutants, probably resulting in impaired ribosome biogenesis and, in turn, in reduced levels of RpoA protein. RNA co-immunoprecipitation revealed that ObgC specifically co-precipitates with 23S rRNA in vivo. These findings indicate that ObgC functions primarily in plastid ribosome biogenesis during chloroplast development. Furthermore, complementation analysis can provide new insights into the functional modes of three ObgC domains, including the Obg fold, G domain and OCT.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cloroplastos/metabolismo , Ribosomas/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Mutagénesis Insercional , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Interferencia de ARN , ARN de Planta/genética , ARN Ribosómico 23S/genética
4.
Biochem Biophys Res Commun ; 434(4): 797-802, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23602899

RESUMEN

Rab proteins play an essential role in regulating vesicular transport in eukaryotic cells. Previously, we characterized OsRab11, which in concert with OsGAP1 and OsGDI3 regulates vesicular trafficking from the trans-Golgi network (TGN) to the plasma membrane or vacuole. To further elucidate the physiological function of OsRab11 in plants, we performed yeast two-hybrid screens using OsRab11 as bait. OsOPR8 was isolated and shown to interact with OsRab11. A co-immunoprecipitation assay confirmed this interaction. The green fluorescent protein-OsOPR8 fusion product was targeted to the cytoplasm and peroxisomes of protoplasts from Arabidopsis thaliana. OsOPR8 exhibited NADPH-dependent reduction activity when 2-cyclohexen-1-one (CyHE) and 12-oxo-phytodienoic acid (OPDA) were supplied as possible substrates. Interestingly, NADPH oxidation by OsOPR8 was increased when wild-type OsRab11 or the constitutively active form of OsRab11 (Q78L) were included in the reaction mix, but not when the dominant negative form of OsRab11 (S28N) was included. OsRab11 was expressed broadly in plants and both OsRab11 and OsOPR8 were induced by jasmonic acid (JA) and elicitor treatments. Overexpressed OsRab11 transgenic plants showed resistance to pathogens through induced expression of JA-responsive genes. In conclusion, OsRab11 may be required for JA-mediated defense signaling by activating the reducing activity of OsOPR8.


Asunto(s)
Oryza/genética , Proteínas de Plantas/genética , Transducción de Señal/genética , Proteínas de Unión al GTP rab/genética , Secuencia de Aminoácidos , Arabidopsis/citología , Arabidopsis/genética , Arabidopsis/metabolismo , Ciclopentanos/farmacología , Citoplasma/metabolismo , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Oryza/metabolismo , Oryza/microbiología , Oxilipinas/farmacología , Peroxisomas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Unión Proteica , Transporte de Proteínas , Protoplastos/citología , Protoplastos/metabolismo , Protoplastos/microbiología , Pseudomonas syringae/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Proteínas de Unión al GTP rab/metabolismo
5.
J Biol Chem ; 286(10): 8620-8632, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21205822

RESUMEN

The YlqF/YawG families are important GTPases involved in ribosome biogenesis, cell proliferation, or cell growth, however, no plant homologs have yet to be characterized. Here we isolated rice (Oryza sativa) and Arabidopsis nuclear/nucleolar GTPase 2 (OsNug2 and AtNug2, respectively) that belong to the YawG subfamily and characterized them for pre-60S ribosomal subunit maturation. They showed typical intrinsic YlqF/YawG family GTPase activities in bacteria and yeasts with k(cat) values 0.12 ± 0.007 min(-1) (n = 6) and 0.087 ± 0.002 min(-1) (n = 4), respectively, and addition of 60S ribosomal subunits stimulated their activities in vitro. In addition, OsNug2 rescued the lethality of the yeast nug2 null mutant through recovery of 25S pre-rRNA processing. By yeast two-hybrid screening five clones, including a putative one of 60S ribosomal proteins, OsL10a, were isolated. Subcellular localization and pulldown assays resulted in that the N-terminal region of OsNug2 is sufficient for nucleolar/nuclear targeting and association with OsL10a. OsNug2 is physically associated with pre-60S ribosomal complexes highly enriched in the 25S, 5.8S, and 5S rRNA, and its interaction was stimulated by exogenous GTP. Furthermore, the AtNug2 knockdown mutant constructed by the RNAi method showed defective growth on the medium containing cycloheximide. Expression pattern analysis revealed that the distribution of AtNug2 mainly in the meristematic region underlies its potential role in active plant growth. Finally, it is concluded that Nug2/Nog2p GTPase from mono- and didicotyledonous plants is linked to the pre-60S ribosome complex and actively processed 27S into 25S during the ribosomal large subunit maturation process, i.e. prior to export to the cytoplasm.


Asunto(s)
Arabidopsis/enzimología , Núcleo Celular/enzimología , GTP Fosfohidrolasas/metabolismo , Meristema/enzimología , Proteínas Nucleares/metabolismo , Oryza/enzimología , Proteínas de Plantas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Núcleo Celular/genética , GTP Fosfohidrolasas/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Prueba de Complementación Genética , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas Nucleares/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , ARN de Planta/genética , ARN de Planta/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Biochem Biophys Res Commun ; 414(4): 814-9, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-22020099

RESUMEN

GDP dissociation inhibitor (GDI) plays an essential role in regulating the state of bound nucleotides and subcellular localizations of Rab proteins. In our previous study, we showed that OsGDI3 facilitates the recycling of OsRab11 with a help of OsGAP1. In this study, we show that OsGDI3 complement the yeast sec19-1 mutant, a temperature-sensitive allele of the yeast GDI gene, suggesting that OsGDI3 is a functional ortholog of yeast GDI. To obtain further knowledge on the function of OsGDI3, candidate OsGDI3-interacting proteins were identified by yeast two-hybrid screens. OsMAPK2 is one of OsGDI3 interacting proteins from yeast two-hybrid screens and subject to further analysis. A kinase assay showed that the autophosphorylation activity of OsMAPK2 is inhibited by OsGDI3 in vitro. In addition, ectopic expressions of OsGDI3-in Arabidopsis cause reductions at the level of phosphorylated AtMPK in phosphorylation activity. Taken together, OsGDI3 functions as a negative regulator of OsMAPK2 through modulating its kinase activity.


Asunto(s)
Inhibidores de Disociación de Guanina Nucleótido/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Oryza/metabolismo , Inhibidores de Disociación de Guanina Nucleótido/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Técnicas del Sistema de Dos Híbridos , Proteínas de Unión al GTP rab/metabolismo
7.
Proc Natl Acad Sci U S A ; 105(15): 5933-8, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18408158

RESUMEN

Protein N-glycosylation in the endoplasmic reticulum (ER) and in the Golgi apparatus is an essential process in eukaryotic cells. Although the N-glycosylation pathway in the ER has been shown to regulate protein quality control, salt tolerance, and cellulose biosynthesis in plants, no biological roles have been linked functionally to N-glycan modifications that occur in the Golgi apparatus. Herein, we provide evidence that mutants defective in N-glycan maturation, such as complex glycan 1 (cgl1), are more salt-sensitive than wild type. Salt stress caused growth inhibition, aberrant root-tip morphology, and callose accumulation in cgl1, which were also observed in an ER oligosaccharyltransferase mutant, staurosporin and temperature sensitive 3a (stt3a). Unlike stt3a, cgl1 did not cause constitutive activation of the unfolded protein response. Instead, aberrant modification of the plasma membrane glycoprotein KORRIGAN 1/RADIALLY SWOLLEN 2 (KOR1/RSW2) that is necessary for cellulose biosynthesis occurred in cgl1 and stt3a. Genetic analyses identified specific interactions among rsw2, stt3a, and cgl1 mutations, indicating that the function of KOR1/RSW2 protein depends on complex N-glycans. Furthermore, cellulose deficient rsw1-1 and rsw2-1 plants were also salt-sensitive. These results establish that plant protein N-glycosylation functions beyond protein folding in the ER and is necessary for sufficient cell-wall formation under salt stress.


Asunto(s)
Proteínas de Arabidopsis/biosíntesis , Arabidopsis/fisiología , Glicoproteínas/biosíntesis , Aparato de Golgi/metabolismo , Sales (Química) , Adaptación Fisiológica , Arabidopsis/química , Glicosilación
8.
Biochem Biophys Res Commun ; 397(2): 355-60, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20513350

RESUMEN

RNA polymerase II carboxyl-terminal domain (pol II CTD) phosphatases that can dephosphorylate both Ser2-PO(4) and Ser5-PO(4) of CTD have been identified in animals and yeasts, however, only Ser5-PO(4)-specific CTD phosphatases have been identified in plants. Among predicted Arabidopsis SCP1-like small phosphatases (SSP), SSP4, SSP4b, and SSP5 form a unique group with long N-terminal extensions. While SSPs' expression showed similar tissue-specificities, SSP4 and SSP4b were localized exclusively in the nuclei, whereas SSP5 accumulated in both nuclei and cytoplasm. Detailed characterization of SSP activities using various peptides and full-length Arabidopsis pol II CTD substrates established that SSP4 and SSP4b could dephosphorylate both Ser2-PO(4) and Ser5-PO(4) of CTD, whereas SSP5 dephosphorylated only Ser5-PO(4). These results indicate that Arabidopsis SSP gene family encodes active CTD phosphatases like animal SCP1 family proteins, with distinct substrate specificities.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Fosfoproteínas Fosfatasas/metabolismo , ARN Polimerasa II/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Biología Computacional , Fosfoproteínas Fosfatasas/genética , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa II/genética , Serina/metabolismo , Especificidad por Sustrato
9.
Planta ; 232(4): 861-71, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20632185

RESUMEN

In yeast and mammals, the Yip/PRA1 family of proteins has been reported to facilitate the delivery of Rab GTPases to the membrane by dissociating the Rab-GDI complex during vesicle trafficking. Recently, we identified OsPRA1, a plant Yip/PRA1 homolog, as an OsRab7-interacting protein that localizes to the prevacuolar compartment, which suggests that it plays a role in vacuolar trafficking of plant cells. Here, we show that OsPRA1 is essential for vacuolar trafficking and that it has molecular properties that are typical of the Yip/PRA1 family of proteins. A trafficking assay using Arabidopsis protoplasts showed that the point mutant OsPRA1((Y94A)) strongly inhibits the vacuolar trafficking of cargo proteins, but has no inhibitory effect on the plasma membrane trafficking of H(+)-ATPase-GFP, suggesting its specific involvement in vacuolar trafficking. Moreover, OsPRA1 was shown to be an integral membrane protein, suggesting that its two hydrophobic domains may mediate membrane integration, and its cytoplasmic N- and C-terminal regions were found to be important for binding to OsRab7. OsPRA1 also interacted with OsVamp3, implying its involvement in vesicle fusion. Finally, we used a yeast expression system to show that OsPRA1 opposes OsGDI2 activity and facilitates the delivery of OsRab7 to the target membrane. Taken together, our results support strongly that OsPRA1 targets OsRab7 to the tonoplast during vacuolar trafficking.


Asunto(s)
Transporte Biológico/fisiología , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Vacuolas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico/genética , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Datos de Secuencia Molecular , Oryza/genética , Proteínas de Plantas/genética , ATPasas de Translocación de Protón/metabolismo , Técnicas del Sistema de Dos Híbridos
10.
Plant Mol Biol ; 71(4-5): 379-90, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19636801

RESUMEN

Obg is a ribosome-associated GTPase essential for bacterial viability and is conserved in most organisms, from bacteria to eukaryotes. Obg is also expressed in plants, which predicts an important role for this molecule in plant viability; however, the functions of the plant Obg homologs have not been reported. Here, we first identified Arabidopsis AtObgC as a plant chloroplast-targeting Obg and elucidated its molecular biological and physiological properties. AtObgC encodes a plant-specific Obg GTPase that contains an N-terminal region for chloroplast targeting and has intrinsic GTP hydrolysis activity. A targeting assay using a few AtObgC N-terminal truncation mutants revealed that AtObgC localizes to chloroplasts and its transit peptide consists of more than 50 amino acid residues. Interestingly, GFP-fused full-length AtObgC exhibited a punctate staining pattern in chloroplasts of Arabidopsis protoplasts, which suggests a dimerization or multimerization of AtObgC. Moreover, its Obg fold was indispensable for the generation of the punctate staining pattern, and thus, was supposed to be important for such oligomerization of AtObgC by mediating the protein-protein interaction. In addition, the T-DNA insertion AtObgC null mutant exhibited an embryonic lethal phenotype that disturbed the early stage of embryogenesis. Altogether, our results provide a significant implication that AtObgC as a chloroplast targeting GTPase plays an important role at the early embryogenesis by exerting its function in chloroplast protein synthesis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/embriología , Arabidopsis/metabolismo , Cloroplastos/metabolismo , GTP Fosfohidrolasas/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Bacterianas/química , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/química , Regulación de la Expresión Génica de las Plantas/genética , Datos de Secuencia Molecular , Filogenia , Plantas Modificadas Genéticamente , Alineación de Secuencia , Homología de Secuencia de Aminoácido
11.
Arch Biochem Biophys ; 484(1): 30-8, 2009 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-19467629

RESUMEN

The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II functions as a scaffold for RNA processing machineries that recognize differentially phosphorylated conserved (YSPTSPS)(n) repeats. Evidence indicates that proteins that regulate the phosphorylation status of the CTD are determinants of growth, development, and stress responses of plants; however, little is known about the mechanisms that translate the CTD phosphoarray into physiological outputs. We report the bioinformatic identification of a family of three phospho-CTD-associated proteins (PCAPs) in Arabidopsis and the characterization of the AtPRP40 (Arabidopsis thaliana PRE-mRNA-PROCESSING PROTEIN 40) family as PCAPs. AtPRP40s-CTD/CTD-PO(4) interactions were confirmed using the yeast two-hybrid assay and far-Western blotting. WW domains at the N-terminus of AtPRP40b mediate the AtPRP40b-CTD/CTD-PO(4) interaction. Although AtPRP40s interact with both phosphorylated and unphosphorylated CTD in vitro, there is a strong preference for the phosphorylated form in Arabidopsis cell extract. AtPRP40s are ubiquitously expressed and localize to the nucleus. These results establish that AtPRP40s are specific PCAPs, which is consistent with the predicted function of the AtPRP40 family in pre-mRNA splicing.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ARN Polimerasa II/metabolismo , Secuencia de Bases , Far-Western Blotting , Cartilla de ADN , Unión Proteica , ARN Polimerasa II/química , Procesamiento Postranscripcional del ARN , Empalme del ARN , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Técnicas del Sistema de Dos Híbridos
12.
Nucleic Acids Res ; 35(11): 3612-23, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17485478

RESUMEN

Calmodulin (CaM) is involved in defense responses in plants. In soybean (Glycine max), transcription of calmodulin isoform 4 (GmCaM4) is rapidly induced within 30 min after pathogen stimulation, but regulation of the GmCaM4 gene in response to pathogen is poorly understood. Here, we used the yeast one-hybrid system to isolate two cDNA clones encoding proteins that bind to a 30-nt A/T-rich sequence in the GmCaM4 promoter, a region that contains two repeats of a conserved homeodomain binding site, ATTA. The two proteins, GmZF-HD1 and GmZF-HD2, belong to the zinc finger homeodomain (ZF-HD) transcription factor family. Domain deletion analysis showed that a homeodomain motif can bind to the 30-nt GmCaM4 promoter sequence, whereas the two zinc finger domains cannot. Critically, the formation of super-shifted complexes by an anti-GmZF-HD1 antibody incubated with nuclear extracts from pathogen-treated cells suggests that the interaction between GmZF-HD1 and two homeodomain binding site repeats is regulated by pathogen stimulation. Finally, a transient expression assay with Arabidopsis protoplasts confirmed that GmZF-HD1 can activate the expression of GmCaM4 by specifically interacting with the two repeats. These results suggest that the GmZF-HD1 and -2 proteins function as ZF-HD transcription factors to activate GmCaM4 gene expression in response to pathogen.


Asunto(s)
Calmodulina/genética , Glycine max/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Secuencia de Aminoácidos , Sitios de Unión , ADN Complementario/química , ADN Complementario/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/química , Proteínas de Homeodominio/genética , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Glycine max/metabolismo , Glycine max/microbiología , Secuencias Repetidas en Tándem , Activación Transcripcional , Dedos de Zinc
13.
Proteomics ; 8(17): 3561-76, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18752204

RESUMEN

While the phytotoxic responses of arsenic (As) on plants have been studied extensively, based on physiological and biochemical aspects, very little is known about As stress-elicited changes in plants at the proteome level. Hydroponically grown 2-wk-old rice seedlings were exposed to different doses of arsenate, and roots were collected after 4 days of treatment, as well as after a recovery period. To gain a comprehensive understanding of the precise mechanisms underlying As toxicity, metabolism, and the defense reactions in plants, a comparative proteomic analysis of rice roots has been conducted in combination with physiological and biochemical analyses. Arsenic treatment resulted in increases of As accumulation, lipid peroxidation, and in vivo H(2)O(2) contents in roots. A total of 23 As-regulated proteins including predicted and novel ones were identified using 2-DE coupled with MS analyses. The expression levels of S-adenosylmethionine synthetase (SAMS), GSTs, cysteine synthase (CS), GST-tau, and tyrosine-specific protein phosphatase proteins (TSPP) were markedly up-regulated in response to arsenate, whereas treatment by H(2)O(2) also regulated the levels of CS suggesting that its expression was certainly regulated by As or As-induced oxidative stress. In addition, an omega domain containing GST was induced only by arsenate. However, it was not altered by treatment of arsenite, copper, or aluminum, suggesting that it may play a particular role in arsenate stress. Analysis of the total glutathione (GSH) content and enzymatic activity of glutathione reductase (GR) in rice roots during As stress revealed that their activities respond in a dose-dependent manner of As. These results suggest that SAMS, CS, GSTs, and GR presumably work synchronously wherein GSH plays a central role in protecting cells against As stress.


Asunto(s)
Arsénico/toxicidad , Glutatión/fisiología , Oryza/metabolismo , Proteínas de Plantas/biosíntesis , Raíces de Plantas/metabolismo , Proteómica , Aluminio/farmacología , Cobre/farmacología , Cisteína Sintasa/biosíntesis , Regulación hacia Abajo , Electroforesis en Gel Bidimensional , Perfilación de la Expresión Génica , Glutatión Reductasa/biosíntesis , Glutatión Transferasa/biosíntesis , Peroxidación de Lípido/efectos de los fármacos , Oryza/efectos de los fármacos , Proteínas de Plantas/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Transducción de Señal/fisiología , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Regulación hacia Arriba
14.
Plant Cell Physiol ; 49(9): 1350-63, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18682427

RESUMEN

In Chl biosynthesis, aerobic Mg-protoporphyrin IX monomethyl ester (MPE) cyclase is a key enzyme involved in the synthesis of protochlorophyllide a, and its membrane-bound component is known to be encoded by homologs of CHL27 in photosynthetic bacteria, green algae and plants. Here, we report that the Arabidopsis chl27-t knock-down mutant exhibits retarded growth and chloroplast developmental defects that are caused by damage to PSII reaction centers. The mutant contains a T-DNA insertion within the CHL27 promoter that dramatically reduces the CHL27 mRNA level. chl27-t mutant plants grew slowly with a pale green appearance, suggesting that they are defective in Chl biosynthesis. Chl fluorescence analysis showed significantly low photosynthetic activity in chl27-t mutants, indicating damage in their PSII reaction centers. The chl27-t mutation also conferred severe defects in chloroplast development, including the unstacking of thylakoid membranes. Microarray analysis of the chl27-t mutant showed repression of numerous nuclear genes involved in photosynthesis, including those encoding components of light-harvesting complex I (LHCI) and LHCII, and PSI and PSII, which accounts for the defects in photosynthetic activity and chloroplast development. In addition, the microarray data also revealed the significant repression of genes such as PORA and AtFRO6 for Chl biosynthesis and iron acquisition, respectively, and, furthermore, implied that there is cross-talk in the Chl biosynthetic pathway among the PORA, AtFRO6 and CHL27 proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Perfilación de la Expresión Génica , Fotosíntesis/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Clorofila/biosíntesis , Cloroplastos/genética , ADN Bacteriano/genética , Genes de Plantas , Prueba de Complementación Genética , Mutagénesis Insercional , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Complejo de Proteína del Fotosistema II/metabolismo , Regiones Promotoras Genéticas , ARN de Planta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Biochem Biophys Res Commun ; 372(4): 907-12, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18541146

RESUMEN

Proteins in CPL1 family are unique to plants and contain a phosphatase catalytic domain and double-stranded RNA (dsRNA)-binding motifs (DRMs) in a single peptide. Though DRMs are important for the function of Arabidopsis CPL1 in vivo, the role of CPL1 DRM has been obscure. We have isolated two transcription factors, ANAC019 (At1g52890) and AtMYB3 (At1g22640), which specifically interact with the C-terminal region (640-967) of AtCPL1 containing two DRMs. Detailed interaction analysis indicated that AtMYB3 specifically interacted with the first DRM but not with the second DRM in CPL1 C-terminal fragment. GFP-fusion analysis indicated that AtMYB3 localized in nuclei-like CPL1, and its expression is induced by abiotic stress and ABA treatment. These results suggest that AtMYB3 function in abiotic stress signaling in concert with CPL1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Ambiente , Proteínas Fluorescentes Verdes/genética , Fosfoproteínas Fosfatasas/genética , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Técnicas del Sistema de Dos Híbridos
16.
Mol Cells ; 26(1): 26-33, 2008 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-18511887

RESUMEN

The plasmid pJB01, a member of the pMV158 family isolated from Enterococcus faecium JC1, contains three open reading frames, copA, repB, and repC. Plasmids included in this family produce counter-transcribed RNA (ctRNA) that contributes to copy number control. The pJB01 ctRNA, a transcript which consists of 54 nucleotides (nts), is encoded on the opposite strand from the copA/repB intergenic region and partially overlaps an atypical ribosome binding site (ARBS) for repB. The ARBS is integrated by the two underlined conserved regions: 5'-TTTTTGTNNNNTAANNNNN NNNNATG-3', and the ctRNA is complementary only to the 5' conserved sequence 5'-TTTTTGT-3'. This complementary sequence is located at a distance from the terminal loop of the ctRNA secondary structure. The ctRNA structure predicted by the mfold program suggests the possible generation of a terminal and an internal hairpin loop. The amount of in vitro translation product of repB mRNA was inversely proportional to the ctRNA concentration. Mutations in the terminal and internal hairpin loops of the ctRNA had inhibitory effects on its binding to the target mRNA. We propose that the intact structures of the terminal and internal hairpin loops, respectively, play important roles in forming the initial kissing and extending complexes between the ctRNA and target mRNA and that these regulate the copy number of this plasmid.


Asunto(s)
Proteínas Bacterianas/genética , Enterococcus faecium/genética , Regulación Bacteriana de la Expresión Génica , Sistemas de Lectura Abierta/genética , Plásmidos/genética , ARN Bacteriano/fisiología , ARN Mensajero/genética , Secuencia de Bases , Conjugación Genética , Replicación del ADN , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Dosificación de Gen , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación/genética , Conformación de Ácido Nucleico , Replicón , Homología de Secuencia de Ácido Nucleico
17.
Plant Physiol Biochem ; 46(12): 1062-70, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18755596

RESUMEN

Glyphosate is one of the most widely used herbicides in cereal-growing regions worldwide. In the present work, the protein expression profile of rice leaves exposed to glyphosate was analyzed in order to investigate the alternative effects of glyphosate on plants. Two-week-old rice leaves were subjected to glyphosate or a reactive oxygen species (ROS) inducing herbicide paraquat, and total soluble proteins were extracted and analyzed by two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) analysis. A total of 25 differentially expressed proteins were identified from the glyphosate treated sample, wherein 18 proteins were up-regulated and 7 proteins were down-regulated. These proteins had shown a parallel expression pattern in response to paraquat. Results from the 2-DE analysis, combined with immunoblotting, clearly revealed that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) large subunit was significantly decreased by the treatment of both herbicides. An increased accumulation of antioxidant enzymes including ascorbate peroxidase, glutathione S-transferase, thioredoxin h-type, nucleoside diphosphate kinase 1, peroxiredoxin and a superoxide dismutase [Cu-Zn] chloroplast precursor in the glyphosate-treated sample suggests that a glyphosate treatment possibly generates oxidative stress in plants. Moreover, a gene expression analysis of five antioxidant enzymes by Northern blot confirmed their mRNA levels in the rice leaves. A histo-cytochemical investigation with DAB (3,3-diaminobenzidine) to localize H(2)O(2) and increases of the thiobarbituric acid reactive substances (TBARS) concentration revealed that the glyphosate application generates ROS, which resulted in the peroxidation and destruction of lipids in the rice leaves.


Asunto(s)
Glicina/análogos & derivados , Oryza/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Proteómica , Secuencia de Bases , Western Blotting , Cartilla de ADN , Glicina/farmacología , Oryza/enzimología , Oryza/metabolismo , Fotosíntesis , Hojas de la Planta/enzimología , Hojas de la Planta/metabolismo , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Glifosato
18.
C R Biol ; 330(10): 735-46, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17905393

RESUMEN

Seed germination is a complex physiological process in plants that can be affected severely by heavy metals. The interference of germination by cadmium stress has not been well documented at the proteomic level. In the present study, in order to investigate the protein profile alternations during the germination stage following exposure to cadmium, a proteomic approach has been adopted in combination with morphological and physiological parameters. Seeds were exposed with a wide range of cadmium between 0.2 and 1.0 mM. Increases of cadmium concentration in the medium resulted in increased cadmium accumulation in seeds and TBARS content, whereas germination rate, shoot elongation, biomass, and water content were decreased significantly. Temporal changes of the total proteins were investigated by two-dimensional electrophoresis (2-DE). Twenty-one proteins were identified using MALDI-TOF mass spectrometry, which were upregulated at least 1.5-fold in response to cadmium stress. The identified proteins are involved in several processes, including defense and detoxification, antioxidant, protein biosynthesis, and germination processes. The identification of these proteins in the cadmium stress response provides new insight that can lead to a better understanding of the molecular basis of heavy metal responses of seeds at the germination stage.


Asunto(s)
Cloruro de Cadmio/toxicidad , Oryza/efectos de los fármacos , Plantones/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Biomasa , Cloruro de Cadmio/administración & dosificación , Relación Dosis-Respuesta a Droga , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Oryza/química , Oryza/fisiología , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/análisis , Brotes de la Planta/química , Plantones/química , Plantones/crecimiento & desarrollo , Contaminantes del Suelo/administración & dosificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Regulación hacia Arriba/efectos de los fármacos , Agua/análisis
19.
Physiol Plant ; 131(4): 555-70, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18251847

RESUMEN

A comparative proteomic approach has been adopted in combination with physiological and biochemical analysis of tomato leaves responding to waterlogging stress. Waterlogging resulted in increases of relative ion leakage, lipid peroxidation and in vivo H2O2 content, whereas the chlorophyll content was decreased. Histocytochemical investigations with 3,3'-diaminobenzidine to localize H2O2 and Evans blue to detect dead cells suggested that oxidative stress has a significant role to leaf senescence. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant leaf protein, was successfully reduced from the samples by a fractionation method based on 15% polyethylene glycol (PEG). Elimination of Rubisco was further confirmed by Western blot analysis. To elucidate the temporal changes of the protein patterns in tomato leaves, the total soluble and the PEG-fractionated proteins were separated by two-dimensional electrophoresis (2-DE) and visualized by Coomassie Brilliant Blue staining. A total of 52 protein spots were differentially expressed, wherein 33 spots were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry or electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis. The identified proteins are involved in several processes, i.e. photosynthesis, disease resistance, stress and defense mechanisms, energy and metabolism and protein biosynthesis. Results from 2-DE analysis, combined with immunoblotting clearly showed that the fragments of Rubisco large subunit were significantly degraded. This could result from a higher production of reactive oxygen species in leaves under waterlogging stress. Furthermore, four differentially accumulated proteins were analyzed at the mRNA level, confirming the differential gene expression levels and revealing that transcription levels are not always concomitant to the translation level. A number of novel proteins were differentially expressed or appeared only in the PEG-fractionated protein samples, indicating that PEG fractionation system can be used as a versatile protein fractionation technique in proteomic analysis to identify novel or low-abundant proteins from all kinds of plant species.


Asunto(s)
Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteoma , Solanum lycopersicum/genética , Agua/fisiología , Clorofila/metabolismo , Electrólitos/metabolismo , Peróxido de Hidrógeno/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
20.
FEBS Lett ; 580(1): 351-5, 2006 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-16376335

RESUMEN

The H2O2-catabolizing peroxidase activity of human peroxiredoxin I (hPrxI) was previously shown to be regulated by phosphorylation of Thr90. Here, we show that hPrxI forms multiple oligomers with distinct secondary structures. HPrxI is a dual function protein, since it can behave either as a peroxidase or as a molecular chaperone. The effects of phosphorylation of hPrxI on its protein structure and dual functions were determined using site-directed mutagenesis, in which the phosphorylation site was substituted with aspartate to mimic the phosphorylated status of the protein (T90D-hPrxI). Phosphorylation of the protein induces significant changes in its protein structure from low molecular weight (MW) protein species to high MW protein complexes as well as its dual functions. In contrast to the wild type (WT)- and T90A-hPrxI, the T90D-hPrxI exhibited a markedly reduced peroxidase activity, but showed about sixfold higher chaperone activity than WT-hPrxI.


Asunto(s)
Sustitución de Aminoácidos , Chaperonas Moleculares/química , Peroxidasas/química , Mutación Puntual , Humanos , Peróxido de Hidrógeno/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Peroxirredoxinas , Fosforilación , Estructura Terciaria de Proteína/genética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA