RESUMEN
Investigating the process of crystalline transformation in metal-organic frameworks (MOFs) has significant implications in advancing our understanding of the growth mechanisms and design of innovative materials. This study achieves a theoretically impossible transformation direction from three-dimensional (3D) zeolitic imidazolate nanocubes (ZIF) to two-dimensional (2D) ZIF nanoframes through the Marangoni effect in droplets. This transformation challenges the established belief that only a transition from 2D ZIF-L to 3D ZIF-67 is possible, which neglects the reverse process. Finite element analysis indicates that the conversion from 3D ZIF to 2D ZIF is feasible when uniform mass distribution and heat transport are guaranteed under Marangoni flow. This research not only demonstrates an alternative pathway for MOF crystalline transformation but also provides a fresh perspective on the construction of MOF nanoframes.
RESUMEN
Additive manufacturing (AM) of copper through laser-based processes poses challenges, primarily attributed to the high thermal conductivity and low laser absorptivity of copper powder or wire as the feedstock. Although the use of copper salts in vat photopolymerization-based AM techniques has garnered recent attention, achieving micro-architected copper with high conductivity and density has remained elusive. In this study, we present a facile and efficient process to create complex 3D micro-architected copper structures with superior electrical conductivity and hardness. The process entails the formulation of an ion-exchangeable photoresin, followed by the utilization of digital light processing (DLP) printing to sculpt 3D hydrogel scaffolds, which were transformed into Cu2+-chelated polymer frameworks (Cu-CPFs) with a high loading of Cu2+ ions through ion exchange, followed by debinding and sintering, results in the transformation of Cu-CPFs into miniaturized copper architectures. This methodology represents an efficient pathway for the creation of intricate micro-architected 3D metal structures.
RESUMEN
The catalytic performance of metal-organic frameworks (MOFs) in Li-S batteries is significantly hindered by unsuitable pore size, low conductivity, and large steric contact hindrance between the catalytic site and lithium polysulfide (LPSs). Herein, the smallest π-conjugated hexaaminobenzene (HAB) as linker and Ni(II) ions as skeletal node are in situ assembled into high crystallinity Ni-HAB 2D conductive MOFs with dense Ni-N4 units via dsp2 hybridization on the surface of carbon nanotube (CNT), fabricating Ni-HAB@CNT as separator modified layer in Li-S batteries. As-obtained unique π-d conjugated Ni-HAB nanostructure features ordered micropores with suitable pore size (≈8 Å) induced by HAB ligands, which can cooperate with dense Ni-N4 chemisorption sites to effectively suppress the shuttle effect. Meanwhile, the conversion kinetics of LPSs is significantly accelerated owing to the small steric contact hindrance and increased delocalized electron density endued by the planar tetracoordinate structure. Consequently, the Li-S battery with Ni-HAB@CNT modified separator achieves an areal capacity of 6.29 mAh cm-2 at high sulfur loading of 6.5 mg cm-2 under electrolyte/sulfur ratio of 5 µL mg-1 . Moreover, Li-S single-electrode pouch cells with modified separators deliver a high reversible capacity of 791 mAh g-1 after 50 cycles at 0.1 C with electrolyte/sulfur ratio of 6 µL mg-1 .
RESUMEN
Encapsulation strategies are widely used for alleviating dissolution and diffusion of polysulfides, but they experience nonrecoverable structural failure arising from the repetitive severe volume change during lithium-sulfur battery cycling. Here we report a methodology to construct an electrochemically recoverable protective layer of polysulfides using an electrolyte additive. The additive nitrogen-doped carbon dots maintain their "dissolved" status in the electrolyte at the full charge state, and some of them function as active sites for lithium sulfide growth at the full discharge state. When polysulfides are present amid the transition between sulfur and lithium sulfide, nitrogen-doped carbon dots become highly reactive with polysulfides to form a solid and recoverable polysulfide-encapsulating layer. This design skilfully avoids structural failure and efficiently suppresses polysulfide shuttling. The sulfur cathode delivers a high reversible capacity of 891 mAh g-1 at 0.5 C with 99.5% coulombic efficiency and cycling stability up to 1000 cycles at 2 C.