Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 187(2): 271-273, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38242083

RESUMEN

Tumors are not simply a chaotic mass of mutated cells but can follow complex organizational principles, including in space. In this issue of Cell, Mathur and colleagues reconstruct a 3D genomic, epigenomic, and transcriptomic spatial cartograph of glioblastoma, offering a "whole-tumor" perspective with patterns of clonal expansion that are embedded in neurodevelopmental hierarchy.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Transcriptoma , Perfilación de la Expresión Génica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología
2.
Glia ; 70(10): 1938-1949, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35735919

RESUMEN

Morphological and emerging molecular studies have provided evidence for heterogeneity within the oligodendrocyte population. To address the regional and age-related heterogeneity of human mature oligodendrocytes (MOLs) we applied single-cell RNA sequencing to cells isolated from cortical/subcortical, subventricular zone brain tissue samples, and thoracolumbar spinal cord samples. Unsupervised clustering of cells identified transcriptionally distinct MOL subpopulations across regions. Spinal cord MOLs, but not microglia, exhibited cell-type-specific upregulation of immune-related markers compared to the other adult regions. SVZ MOLs showed an upregulation of select number of development-linked transcription factors compared to other regions; however, pseudotime trajectory analyses did not identify a global developmental difference. Age-related analysis of cortical/subcortical samples indicated that pediatric MOLs, especially from under age 5, retain higher expression of genes linked to development and to immune activity with pseudotime analysis favoring a distinct developmental stage. Our regional and age-related studies indicate heterogeneity of MOL populations in the human CNS that may reflect developmental and environmental influences.


Asunto(s)
Oligodendroglía , Médula Espinal , Encéfalo , Niño , Preescolar , Humanos , Microglía , Oligodendroglía/metabolismo
3.
iScience ; 27(4): 109342, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38495819

RESUMEN

The existence of neural stem cells (NSCs) in adult human brain neurogenic regions remains unresolved. To address this, we created a cell atlas of the adult human subventricular zone (SVZ) derived from fresh neurosurgical samples using single-cell transcriptomics. We discovered 2 adult radial glia (RG)-like populations, aRG1 and aRG2. aRG1 shared features with fetal early RG (eRG) and aRG2 were transcriptomically similar to fetal outer RG (oRG). We also captured early neuronal and oligodendrocytic NSC states. We found that the biological programs driven by their transcriptomes support their roles as early lineage NSCs. Finally, we show that these NSCs have the potential to transition between states and along lineage trajectories. These data reveal that multipotent NSCs reside in the adult human SVZ.

4.
Neuro Oncol ; 24(9): 1494-1508, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35416251

RESUMEN

BACKGROUND: Glioblastoma is a treatment-resistant brain cancer. Its hierarchical cellular nature and its tumor microenvironment (TME) before, during, and after treatments remain unresolved. METHODS: Here, we used single-cell RNA sequencing to analyze new and recurrent glioblastoma and the nearby subventricular zone (SVZ). RESULTS: We found 4 glioblastoma neural lineages are present in new and recurrent glioblastoma with an enrichment of the cancer mesenchymal lineage, immune cells, and reactive astrocytes in early recurrences. Cancer lineages were hierarchically organized around cycling oligodendrocytic and astrocytic progenitors that are transcriptomically similar but distinct to SVZ neural stem cells (NSCs). Furthermore, NSCs from the SVZ of patients with glioblastoma harbored glioblastoma chromosomal anomalies. Lastly, mesenchymal cancer cells and TME reactive astrocytes shared similar gene signatures which were induced by radiotherapy in a myeloid-dependent fashion in vivo. CONCLUSION: These data reveal the dynamic, immune-dependent nature of glioblastoma's response to treatments and identify distant NSCs as likely cells of origin.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células-Madre Neurales , Neoplasias Encefálicas/patología , Glioblastoma/patología , Humanos , Ventrículos Laterales/patología , Células-Madre Neurales/patología , Análisis de la Célula Individual , Microambiente Tumoral
5.
Nat Commun ; 11(1): 3406, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641768

RESUMEN

Cancer stem cells are critical for cancer initiation, development, and treatment resistance. Our understanding of these processes, and how they relate to glioblastoma heterogeneity, is limited. To overcome these limitations, we performed single-cell RNA sequencing on 53586 adult glioblastoma cells and 22637 normal human fetal brain cells, and compared the lineage hierarchy of the developing human brain to the transcriptome of cancer cells. We find a conserved neural tri-lineage cancer hierarchy centered around glial progenitor-like cells. We also find that this progenitor population contains the majority of the cancer's cycling cells, and, using RNA velocity, is often the originator of the other cell types. Finally, we show that this hierarchal map can be used to identify therapeutic targets specific to progenitor cancer stem cells. Our analyses show that normal brain development reconciles glioblastoma development, suggests a possible origin for glioblastoma hierarchy, and helps to identify cancer stem cell-specific targets.


Asunto(s)
Neoplasias Encefálicas/genética , Encéfalo/metabolismo , Glioblastoma/genética , Células Madre Neoplásicas/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Adulto , Animales , Antineoplásicos Alquilantes/farmacología , Encéfalo/embriología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Células Cultivadas , Femenino , Feto , Glioblastoma/patología , Glioblastoma/terapia , Humanos , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/efectos de los fármacos , Análisis de la Célula Individual/métodos , Temozolomida/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
7.
Stem Cells Int ; 2019: 5142518, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30956670

RESUMEN

We have determined the protective effects of Thymus serpyllum (TS) extract and nanoparticle-loaded TS on hydrogen peroxide-induced cell death of mesenchymal stromal cells (MSCs) in vitro. Gas chromatography-mass spectroscopy confirmed the spectrum of active components in the extract. Out of the three different extracts, the hexane extract showed significant free radical scavenging activity. Treatment of MSCs with H2O2 (hydrogen peroxide) significantly increased intracellular cell death; however, pretreatment with TS extract and nanoparticle-loaded TS (200 µg/ml) suppressed H2O2-induced elevation of Cyt-c and MMP13 and increased the survival rates of MSCs. H2O2-induced (0.1 mM) changes in cytokines were attenuated in the extract and nanoparticles by pretreatment and cotreatment at two time points (p < 0.05). H2O2 increased cell apoptosis. In contrast, treatment with nanoparticle-loaded TS suppressed the percentage of apoptosis considerably (p < 0.05). Therefore, TS may be considered as a potential candidate for enhancing the effectiveness of MSC transplantation in cell therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA