Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Adv Exp Med Biol ; 1330: 75-94, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34339031

RESUMEN

The majority of ovarian cancer patients present clinically with wide-spread metastases throughout the peritoneal cavity, metastasizing to the mesothelium-lined peritoneum and visceral adipose depots within the abdomen. This unique metastatic tumor microenvironment is comprised of multiple cell types, including mesothelial cells, fibroblasts, adipocytes, macrophages, neutrophils, and T lymphocytes. Modeling advancements, including complex 3D systems and organoids, coupled with 2D cocultures, in vivo mouse models, and ex vivo human tissue cultures have greatly enhanced our understanding of the tumor-stroma interactions that are required for successful metastasis of ovarian cancer cells. However, advanced multifaceted model systems that incorporate frequency and spatial distribution of all cell types present in the tumor microenvironment of ovarian cancer are needed to enhance our knowledge of ovarian cancer biology in order to identify methods for preventing and treating metastatic disease. This review highlights the utility of recently developed modeling approaches, summarizes some of the resulting progress using these techniques, and suggests how these strategies may be implemented to elucidate signaling processes among cell types of the tumor microenvironment that promote ovarian cancer metastasis.


Asunto(s)
Neoplasias Ováricas , Cavidad Peritoneal , Animales , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Epitelio , Femenino , Humanos , Ratones , Microambiente Tumoral
2.
Reproduction ; 155(1): 61-71, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29066531

RESUMEN

Recent studies showed that genetic aberrations in the MED12 gene, probably through the canonical WNT/ß-catenin pathway, lead to the pathogenesis of uterine fibroids. However, a comprehensive analysis of the WNT pathway in MED12-mutated and MED12-wild-type fibroids has not been performed. The objective of this study was to determine the status of the WNT pathway in human fibroids. We performed Sanger sequencing to define the MED12 mutational status of fibroids and normal myometrium samples. qPCR arrays were carried out to determine the status of the WNT signaling pathway in MED12-mutated and MED12-wild-type fibroids. Liquid chromatography-mass spectrometry (LC-MS), Western blotting and immunohistochemistry were used to monitor the expression of ß-catenin. We showed that ß-catenin expression was increased in fibroids compared to the adjacent myometrium samples. However, ß-catenin expression showed no correlation with MED12 mutation status. Of all the WNT signaling components, WNT inhibitors showed the greatest differences in expression between fibroids and controls. WIF1, a WNT inhibitor, was identified as the most significantly upregulated gene in fibroids. We cultured primary fibroid cells on hydrogels of known stiffness to decipher the influence of biomechanical cues on ß-catenin expression and revealed increased levels of ß-catenin when cells were cultured on a stiffer surface. In conclusion, our data showed that ß-catenin expression in fibroids occurs independently of MED12 mutations. Biomechanical changes upregulate ß-catenin expression in fibroids, providing an attractive avenue for developing new treatments for this disease.


Asunto(s)
Matriz Extracelular/metabolismo , Leiomioma/patología , Mutación , Miometrio/patología , Neoplasias Uterinas/patología , beta Catenina/metabolismo , Células Cultivadas , Femenino , Humanos , Leiomioma/genética , Leiomioma/metabolismo , Complejo Mediador/genética , Miometrio/metabolismo , Neoplasias Uterinas/genética , Neoplasias Uterinas/metabolismo , Vía de Señalización Wnt , beta Catenina/genética
3.
JCI Insight ; 8(6)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36795484

RESUMEN

Ovarian cancer (OvCa) preferentially metastasizes in association with mesothelial cell-lined surfaces. We sought to determine if mesothelial cells are required for OvCa metastasis and detect alterations in mesothelial cell gene expression and cytokine secretion upon interaction with OvCa cells. Using omental samples from patients with high-grade serous OvCa and mouse models with Wt1-driven GFP-expressing mesothelial cells, we validated the intratumoral localization of mesothelial cells during human and mouse OvCa omental metastasis. Removing mesothelial cells ex vivo from human and mouse omenta or in vivo using diphtheria toxin-mediated ablation in Msln-Cre mice significantly inhibited OvCa cell adhesion and colonization. Human ascites induced angiopoietin-like 4 (ANGPTL4) and stanniocalcin 1 (STC1) expression and secretion by mesothelial cells. Inhibition of STC1 or ANGPTL4 via RNAi obstructed OvCa cell-induced mesothelial cell to mesenchymal transition while inhibition of ANGPTL4 alone obstructed OvCa cell-induced mesothelial cell migration and glycolysis. Inhibition of mesothelial cell ANGPTL4 secretion via RNAi prevented mesothelial cell-induced monocyte migration, endothelial cell vessel formation, and OvCa cell adhesion, migration, and proliferation. In contrast, inhibition of mesothelial cell STC1 secretion via RNAi prevented mesothelial cell-induced endothelial cell vessel formation and OvCa cell adhesion, migration, proliferation, and invasion. Additionally, blocking ANPTL4 function with Abs reduced the ex vivo colonization of 3 different OvCa cell lines on human omental tissue explants and in vivo colonization of ID8p53-/-Brca2-/- cells on mouse omenta. These findings indicate that mesothelial cells are important to the initial stages of OvCa metastasis and that the crosstalk between mesothelial cells and the tumor microenvironment promotes OvCa metastasis through the secretion of ANGPTL4.


Asunto(s)
Neoplasias Ováricas , Neoplasias Peritoneales , Humanos , Animales , Ratones , Femenino , Línea Celular Tumoral , Neoplasias Ováricas/metabolismo , Ascitis , Neoplasias Peritoneales/secundario , Microambiente Tumoral , Proteína 4 Similar a la Angiopoyetina/genética
4.
Front Reprod Health ; 5: 1081092, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37113812

RESUMEN

Uterine fibroids are exceedingly common benign tumours of the female reproductive system and cause severe symptoms, including acute pain, bleeding, and infertility. Fibroids are frequently associated with genetic alterations affecting mediator complex subunit 12 (MED12), fumarate hydratase (FH), high mobility group AT-hook 2 (HMGA2) and collagen, type IV alpha 5 and alpha 6 (COL4A5-COL4A6). Recently, we reported MED12 exon 2 mutations in 39 out of 65 uterine fibroids (60%) from 14 Australian patients. The aim of this study was to evaluate the status of FH mutations in MED12 mutation-positive and mutation-negative uterine fibroids. FH mutation screening of altogether 65 uterine fibroids and corresponding adjacent normal myometrium (n = 14) was carried out by Sanger sequencing. Three out of 14 patients displayed somatic mutations in FH exon 1 in addition to harbouring MED12 mutation in uterine fibroids. This study is the first to report that the mutations in MED12 and FH co-exist in uterine fibroids of Australian women.

5.
Cancers (Basel) ; 10(8)2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096959

RESUMEN

Ovarian cancer progression involves multifaceted and variable tumor microenvironments (TMEs), from the in situ carcinoma in the fallopian tube or ovary to dissemination into the peritoneal cavity as single cells or spheroids and attachment to the mesothelial-lined surfaces of the omentum, bowel, and abdominal wall. The TME comprises the tumor vasculature and lymphatics (including endothelial cells and pericytes), in addition to mesothelial cells, fibroblasts, immune cells, adipocytes and extracellular matrix (ECM) proteins. When generating 3D models of the ovarian cancer TME, researchers must incorporate the most relevant stromal components depending on the TME in question (e.g., early or late disease). Such complexity cannot be captured by monolayer 2D culture systems. Moreover, immortalized stromal cell lines, such as mesothelial or fibroblast cell lines, do not always behave the same as primary cells whose response in functional assays may vary from donor to donor; 3D models with primary stromal cells may have more physiological relevance than those using stromal cell lines. In the current review, we discuss the latest developments in organotypic 3D models of the ovarian cancer early metastatic microenvironment. Organotypic culture models comprise two or more interacting cell types from a particular tissue. We focus on organotypic 3D models that include at least one type of primary stromal cell type in an ECM background, such as collagen or fibronectin, plus ovarian cancer cells. We provide an overview of the two most comprehensive current models-a 3D model of the omental mesothelium and a microfluidic model. We describe the cellular and non-cellular components of the models, the incorporation of mechanical forces, and how the models have been adapted and utilized in functional assays. Finally, we review a number of 3D models that do not incorporate primary stromal cells and summarize how integration of current models may be the next essential step in tackling the complexity of the different ovarian cancer TMEs.

6.
Endocrinology ; 159(2): 1106-1118, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29244110

RESUMEN

The central characteristic of uterine fibroids is excessive deposition of extracellular matrix (ECM), which contributes to fibroid growth and bulk-type symptoms. Despite this, very little is known about patterns of ECM protein expression in fibroids and whether these are influenced by the most common genetic anomalies, which relate to MED12. We performed extensive genetic and proteomic analyses of clinically annotated fibroids and adjacent normal myometrium to identify the composition and expression patterns of ECM proteins in MED12 mutation-positive and mutation-negative uterine fibroids. Genetic sequencing of tissue samples revealed MED12 alterations in 39 of 65 fibroids (60%) from 14 patients. Using isobaric tagged-based quantitative mass spectrometry on three selected patients (n = 9 fibroids), we observed a common set of upregulated (>1.5-fold) and downregulated (<0.66-fold) proteins in small, medium, and large fibroid samples of annotated MED12 status. These two sets of upregulated and downregulated proteins were the same in all patients, regardless of variations in fibroid size and MED12 status. We then focused on one of the significant upregulated ECM proteins and confirmed the differential expression of periostin using western blotting and immunohistochemical analysis. Our study defined the proteome of uterine fibroids and identified that increased ECM protein expression, in particular periostin, is a hallmark of uterine fibroids regardless of MED12 mutation status. This study sets the foundation for further investigations to analyze the mechanisms regulating ECM overexpression and the functional role of upregulated ECM proteins in leiomyogenesis.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Leiomioma/metabolismo , Proteoma/análisis , Neoplasias Uterinas/metabolismo , Adulto , Anciano , Moléculas de Adhesión Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Leiomioma/genética , Persona de Mediana Edad , Miometrio/metabolismo , Proteoma/metabolismo , Proteómica , Neoplasias Uterinas/genética
7.
Oncotarget ; 8(5): 7265-7275, 2017 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-27980219

RESUMEN

During aging, uncontrolled epithelial cell proliferation in the uterus results in endometrial hyperplasia and/or cancer development. The mTOR signaling pathway is one of the major regulators of aging as suppression of this pathway prolongs lifespan in model organisms. Genetic alterations in this pathway via mutations and/or amplifications are often encountered in endometrial cancers. However, the exact contribution of mTOR signaling and uterine aging to endometrial pathologies is currently unclear. This study examined the role of mTOR signaling in uterine aging and its implications in the development of endometrial hyperplasia. The hyperplastic endometrium of both postmenopausal women and aged mice exhibited elevated mTOR activity as seen with increased expression of the pS6 protein. Analysis of uteri from Pten heterozygous and Pten overexpressing mice further confirmed that over-activation of mTOR signaling leads to endometrial hyperplasia. Pharmacological inhibition of mTOR signaling using rapamycin treatment suppressed endometrial hyperplasia in aged mice. Furthermore, treatment with mTOR inhibitors reduced colony size and proliferation of a PTEN negative endometrial cancer cell line in 3D culture. Collectively, this study suggests that hyperactivation of the mTOR pathway is involved in the development of endometrial hyperplasia in aged women and mice.


Asunto(s)
Proliferación Celular , Hiperplasia Endometrial/enzimología , Endometrio/enzimología , Células Epiteliales/enzimología , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/patología , Hiperplasia Endometrial/prevención & control , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/enzimología , Neoplasias Endometriales/patología , Endometrio/efectos de los fármacos , Endometrio/patología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Femenino , Predisposición Genética a la Enfermedad , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Sirolimus/farmacología , Esferoides Celulares , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
8.
Oncotarget ; 7(15): 19214-27, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-27036037

RESUMEN

Ovarian cancer is a disease of older women. However, the molecular mechanisms of ovarian aging and their contribution to the pathogenesis of ovarian cancer are currently unclear. mTOR signalling is a major regulator of aging as suppression of this pathway extends lifespan in model organisms. Overactive mTOR signalling is present in up to 80% of ovarian cancer samples and is associated with poor prognosis. This study examined the role of mTOR signalling in age-associated changes in ovarian surface epithelium (OSE). Histological examination of ovaries from both aged mice and women revealed OSE cell hyperplasia, papillary growth and inclusion cysts. These pathological lesions expressed bonafide markers of ovarian cancer precursor lesions, Pax8 and Stathmin 1, and were presented with elevated mTOR signalling. To understand whether overactive mTOR signalling is responsible for the development of these pathological changes, we analysed ovaries of the Pten trangenic mice and found significant reduction in OSE lesions compared to controls. Furthermore, pharmacological suppression of mTOR signalling significantly decreased OSE hyperplasia in aged mice. Treatment with mTOR inhibitors reduced human ovarian cancer cell viability, proliferation and colony forming ability. Collectively, we have established the role of mTOR signalling in age-related OSE pathologies and initiation of ovarian cancer.


Asunto(s)
Envejecimiento , Epitelio/metabolismo , Ovario/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Epitelio/efectos de los fármacos , Epitelio/patología , Femenino , Humanos , Hiperplasia/metabolismo , Hiperplasia/prevención & control , Inmunosupresores/farmacología , Ratones Endogámicos C57BL , Ratones Transgénicos , Ovario/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Sirolimus/farmacología
9.
Clin Vaccine Immunol ; 21(3): 261-70, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24451328

RESUMEN

Chicken raised under commercial conditions are vulnerable to environmental exposure to a number of pathogens. Therefore, regular vaccination of the flock is an absolute requirement to prevent the occurrence of infectious diseases. To combat infectious diseases, vaccines require inclusion of effective adjuvants that promote enhanced protection and do not cause any undesired adverse reaction when administered to birds along with the vaccine. With this perspective in mind, there is an increased need for effective better vaccine adjuvants. Efforts are being made to enhance vaccine efficacy by the use of suitable adjuvants, particularly Toll-like receptor (TLR)-based adjuvants. TLRs are among the types of pattern recognition receptors (PRRs) that recognize conserved pathogen molecules. A number of studies have documented the effectiveness of flagellin as an adjuvant as well as its ability to promote cytokine production by a range of innate immune cells. This minireview summarizes our current understanding of flagellin action, its role in inducing cytokine response in chicken cells, and the potential use of flagellin as well as its combination with other TLR ligands as an adjuvant in chicken vaccines.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Flagelina/administración & dosificación , Receptor Toll-Like 5/agonistas , Vacunas/administración & dosificación , Vacunas/inmunología , Animales , Pollos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA