Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 156(1-2): 236-48, 2014 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-24439379

RESUMEN

Wild-type D. melanogaster males innately possess the ability to perform a multistep courtship ritual to conspecific females. The potential for this behavior is specified by the male-specific products of the fruitless (fru(M)) gene; males without fru(M) do not court females when held in isolation. We show that such fru(M) null males acquire the potential for courtship when grouped with other flies; they apparently learn to court flies with which they were grouped, irrespective of sex or species and retain this behavior for at least a week. The male-specific product of the doublesex gene (dsx(M)) is necessary and sufficient for the acquisition of the potential for such experience-dependent courtship. These results reveal a process that builds, via dsx(M) and social experience, the potential for a more flexible sexual behavior, which could be evolutionarily conserved as dsx-related genes that function in sexual development are found throughout the animal kingdom.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Animales , Cortejo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Aprendizaje , Masculino , Modelos Animales , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética
2.
Cell ; 154(1): 89-102, 2013 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-23810192

RESUMEN

Genetically hard-wired neural mechanisms must enforce behavioral reproductive isolation because interspecies courtship is rare even in sexually naïve animals of most species. We find that the chemoreceptor Gr32a inhibits male D. melanogaster from courting diverse fruit fly species. Gr32a recognizes nonvolatile aversive cues present on these reproductively dead-end targets, and activity of Gr32a neurons is necessary and sufficient to inhibit interspecies courtship. Male-specific Fruitless (Fru(M)), a master regulator of courtship, also inhibits interspecies courtship. Gr32a and Fru(M) are not coexpressed, but Fru(M) neurons contact Gr32a neurons, suggesting that these genes influence a shared neural circuit that inhibits interspecies courtship. Gr32a and Fru(M) also suppress within-species intermale courtship, but we show that distinct mechanisms preclude sexual displays toward conspecific males and other species. Although this chemosensory pathway does not inhibit interspecies mating in D. melanogaster females, similar mechanisms appear to inhibit this behavior in many other male drosophilids.


Asunto(s)
Drosophila melanogaster/fisiología , Preferencia en el Apareamiento Animal , Animales , Cortejo , Drosophila/clasificación , Drosophila/genética , Drosophila/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Especiación Genética , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(9): E1256-65, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26884206

RESUMEN

The development of sexually dimorphic morphology and the potential for sexually dimorphic behavior in Drosophila are regulated by the Fruitless (Fru) and Doublesex (Dsx) transcription factors. Several direct targets of Dsx have been identified, but direct Fru targets have not been definitively identified. We show that Drosophila leucine-rich repeat G protein-coupled receptor 3 (Lgr3) is regulated by Fru and Dsx in separate populations of neurons. Lgr3 is a member of the relaxin-receptor family and a receptor for Dilp8, necessary for control of organ growth. Lgr3 expression in the anterior central brain of males is inhibited by the B isoform of Fru, whose DNA binding domain interacts with a short region of an Lgr3 intron. Fru A and C isoform mutants had no observed effect on Lgr3 expression. The female form of Dsx (Dsx(F)) separately up- and down-regulates Lgr3 expression in distinct neurons in the abdominal ganglion through female- and male-specific Lgr3 enhancers. Excitation of neural activity in the Dsx(F)-up-regulated abdominal ganglion neurons inhibits female receptivity, indicating the importance of these neurons for sexual behavior. Coordinated regulation of Lgr3 by Fru and Dsx marks a point of convergence of the two branches of the sex-determination hierarchy.


Asunto(s)
Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Factores Sexuales , Animales , Drosophila , Femenino , Masculino
4.
Proc Natl Acad Sci U S A ; 112(8): E852-61, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25675536

RESUMEN

"Regulatory evolution," that is, changes in a gene's expression pattern through changes at its regulatory sequence, rather than changes at the coding sequence of the gene or changes of the upstream transcription factors, has been increasingly recognized as a pervasive evolution mechanism. Many somatic sexually dimorphic features of Drosophila melanogaster are the results of gene expression regulated by the doublesex (dsx) gene, which encodes sex-specific transcription factors (DSX(F) in females and DSX(M) in males). Rapid changes in such sexually dimorphic features are likely a result of changes at the regulatory sequence of the target genes. We focused on the Flavin-containing monooxygenase-2 (Fmo-2) gene, a likely direct dsx target, to elucidate how sexually dimorphic expression and its evolution are brought about. We found that dsx is deployed to regulate the Fmo-2 transcription both in the midgut and in fat body cells of the spermatheca (a female-specific tissue), through a canonical DSX-binding site in the Fmo-2 regulatory sequence. In the melanogaster group, Fmo-2 transcription in the midgut has evolved rapidly, in contrast to the conserved spermathecal transcription. We identified two cis-regulatory modules (CRM-p and CRM-d) that direct sexually monomorphic or dimorphic Fmo-2 transcription, respectively, in the midguts of these species. Changes of Fmo-2 transcription in the midgut from sexually dimorphic to sexually monomorphic in some species are caused by the loss of CRM-d function, but not the loss of the canonical DSX-binding site. Thus, conferring transcriptional regulation on a CRM level allows the regulation to evolve rapidly in one tissue while evading evolutionary constraints posed by other tissues.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolución Molecular , Genes de Insecto , Pleiotropía Genética , Caracteres Sexuales , Animales , Hidrocarburo de Aril Hidroxilasas/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Cardias/metabolismo , Proteínas de Drosophila/metabolismo , Cuerpo Adiposo/citología , Cuerpo Adiposo/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Modelos Biológicos , Datos de Secuencia Molecular , Unión Proteica , Secuencias Reguladoras de Ácidos Nucleicos/genética , Especificidad de la Especie , Transcripción Genética
5.
Proc Natl Acad Sci U S A ; 109(25): 10065-70, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22645338

RESUMEN

Sexual behaviors in animals are governed by inputs from multiple external sensory modalities. However, how these inputs are integrated to jointly control animal behavior is still poorly understood. Whereas visual information alone is not sufficient to induce courtship behavior in Drosophila melanogaster males, when a subset of male-specific fruitless (fru)- and doublesex (dsx)-expressing neurons that respond to chemosensory cues (P1 neurons) were artificially activated via a temperature-sensitive cation channel (dTRPA1), males followed and extended their wing toward moving objects (even a moving piece of rubber band) intensively. When stationary, these objects were not courted. Our results indicate that motion input and activation of P1 neurons are individually necessary, and under our assay conditions, jointly sufficient to elicit early courtship behaviors, and provide insights into how courtship decisions are made via sensory integration.


Asunto(s)
Drosophila melanogaster/fisiología , Movimiento (Física) , Neuronas/fisiología , Conducta Sexual Animal , Animales , Masculino
6.
Development ; 138(13): 2761-71, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21652649

RESUMEN

Uncovering the direct regulatory targets of doublesex (dsx) and fruitless (fru) is crucial for an understanding of how they regulate sexual development, morphogenesis, differentiation and adult functions (including behavior) in Drosophila melanogaster. Using a modified DamID approach, we identified 650 DSX-binding regions in the genome from which we then extracted an optimal palindromic 13 bp DSX-binding sequence. This sequence is functional in vivo, and the base identity at each position is important for DSX binding in vitro. In addition, this sequence is enriched in the genomes of D. melanogaster (58 copies versus approximately the three expected from random) and in the 11 other sequenced Drosophila species, as well as in some other Dipterans. Twenty-three genes are associated with both an in vivo peak in DSX binding and an optimal DSX-binding sequence, and thus are almost certainly direct DSX targets. The association of these 23 genes with optimum DSX binding sites was used to examine the evolutionary changes occurring in DSX and its targets in insects.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Desarrollo Sexual/fisiología , Animales , Sitios de Unión/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Ensayo de Cambio de Movilidad Electroforética , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Masculino , Unión Proteica/genética , Unión Proteica/fisiología , Análisis de Secuencia de ADN , Desarrollo Sexual/genética
7.
BMC Genomics ; 14: 659, 2013 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-24074028

RESUMEN

BACKGROUND: Drosophila melanogaster adult males perform an elaborate courtship ritual to entice females to mate. fruitless (fru), a gene that is one of the key regulators of male courtship behavior, encodes multiple male-specific isoforms (Fru(M)). These isoforms vary in their carboxy-terminal zinc finger domains, which are predicted to facilitate DNA binding. RESULTS: By over-expressing individual Fru(M) isoforms in fru-expressing neurons in either males or females and assaying the global transcriptional response by RNA-sequencing, we show that three Fru(M) isoforms have different regulatory activities that depend on the sex of the fly. We identified several sets of genes regulated downstream of Fru(M) isoforms, including many annotated with neuronal functions. By determining the binding sites of individual Fru(M) isoforms using SELEX we demonstrate that the distinct zinc finger domain of each Fru(M) isoforms confers different DNA binding specificities. A genome-wide search for these binding site sequences finds that the gene sets identified as induced by over-expression of Fru(M) isoforms in males are enriched for genes that contain the binding sites. An analysis of the chromosomal distribution of genes downstream of Fru(M) shows that those that are induced and repressed in males are highly enriched and depleted on the X chromosome, respectively. CONCLUSIONS: This study elucidates the different regulatory and DNA binding activities of three Fru(M) isoforms on a genome-wide scale and identifies genes regulated by these isoforms. These results add to our understanding of sex chromosome biology and further support the hypothesis that in some cell-types genes with male-biased expression are enriched on the X chromosome.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Dedos de Zinc , Animales , Secuencia de Bases , Sitios de Unión , Cromosomas de Insectos/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Regulación de la Expresión Génica , Masculino , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Terciaria de Proteína , Caracteres Sexuales , Factores de Transcripción/genética
8.
Development ; 137(2): 323-32, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20040498

RESUMEN

Although nervous system sexual dimorphisms are known in many species, relatively little is understood about the molecular mechanisms generating these dimorphisms. Recent findings in Drosophila provide the tools for dissecting how neurogenesis and neuronal differentiation are modulated by the Drosophila sex-determination regulatory genes to produce nervous system sexual dimorphisms. Here we report studies aimed at illuminating the basis of the sexual dimorphic axonal projection patterns of foreleg gustatory receptor neurons (GRNs): only in males do GRN axons project across the midline of the ventral nerve cord. We show that the sex determination genes fruitless (fru) and doublesex (dsx) both contribute to establishing this sexual dimorphism. Male-specific Fru (Fru(M)) acts in foreleg GRNs to promote midline crossing by their axons, whereas midline crossing is repressed in females by female-specific Dsx (Dsx(F)). In addition, midline crossing by these neurons might be promoted in males by male-specific Dsx (Dsx(M)). Finally, we (1) demonstrate that the roundabout (robo) paralogs also regulate midline crossing by these neurons, and (2) provide evidence that Fru(M) exerts its effect on midline crossing by directly or indirectly regulating Robo signaling.


Asunto(s)
Axones/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores Inmunológicos/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Femenino , Técnicas In Vitro , Masculino , Microscopía Confocal , Proteínas del Tejido Nervioso/genética , Receptores Inmunológicos/genética , Caracteres Sexuales , Factores de Transcripción/genética , Proteínas Roundabout
9.
PLoS Biol ; 8(5): e1000365, 2010 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-20454565

RESUMEN

The Drosophila melanogaster sex hierarchy controls sexual differentiation of somatic cells via the activities of the terminal genes in the hierarchy, doublesex (dsx) and fruitless (fru). We have targeted an insertion of GAL4 into the dsx gene, allowing us to visualize dsx-expressing cells in both sexes. Developmentally and as adults, we find that both XX and XY individuals are fine mosaics of cells and tissues that express dsx and/or fruitless (fru(M)), and hence have the potential to sexually differentiate, and those that don't. Evolutionary considerations suggest such a mosaic expression of sexuality is likely to be a property of other animal species having two sexes. These results have also led to a major revision of our view of how sex-specific functions are regulated by the sex hierarchy in flies. Rather than there being a single regulatory event that governs the activities of all downstream sex determination regulatory genes-turning on Sex lethal (Sxl) RNA splicing activity in females while leaving it turned off in males-there are, in addition, elaborate temporal and spatial transcriptional controls on the expression of the terminal regulatory genes, dsx and fru. Thus tissue-specific aspects of sexual development are jointly specified by post-transcriptional control by Sxl and by the transcriptional controls of dsx and fru expression.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Drosophila , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas del Tejido Nervioso , Proteínas de Unión al ARN , Diferenciación Sexual , Factores de Transcripción , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Femenino , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Caracteres Sexuales , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Nature ; 436(7049): 395-400, 2005 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-15959468

RESUMEN

Robust innate behaviours are attractive systems for genetically dissecting how environmental cues are perceived and integrated to generate complex behaviours. During courtship, Drosophila males engage in a series of innate, stereotyped behaviours that are coordinated by specific sensory cues. However, little is known about the specific neural substrates mediating this complex behavioural programme. Genetic, developmental and behavioural studies have shown that the fruitless (fru) gene encodes a set of male-specific transcription factors (FruM) that act to establish the potential for courtship in Drosophila. FruM proteins are expressed in approximately 2% of central nervous system neurons, at least one subset of which coordinates the component behaviours of courtship. Here we have inserted the yeast GAL4 gene into the fru locus by homologous recombination and show that (1) FruM is expressed in subsets of all peripheral sensory systems previously implicated in courtship, (2) inhibition of FruM function in olfactory system components reduces olfactory-dependent changes in courtship behaviour, (3) transient inactivation of all FruM-expressing neurons abolishes courtship behaviour, with no other gross changes in general behaviour, and (4) 'masculinization' of FruM-expressing neurons in females is largely sufficient to confer male courtship behaviour. Together, these data demonstrate that FruM proteins specify the neural substrates of male courtship.


Asunto(s)
Cortejo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Caracteres Sexuales , Conducta Sexual Animal/fisiología , Factores de Transcripción/metabolismo , Animales , Sistema Nervioso Central/citología , Sistema Nervioso Central/fisiología , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética
11.
Nature ; 430(6999): 564-9, 2004 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-15282607

RESUMEN

Throughout the animal kingdom the innate nature of basic behaviour routines suggests that the underlying neuronal substrates necessary for their execution are genetically determined and developmentally programmed. Complex innate behaviours require proper timing and ordering of individual component behaviours. In Drosophila melanogaster, analyses of combinations of mutations of the fruitless (fru) gene have shown that male-specific isoforms (Fru(M)) of the Fru transcription factor are necessary for proper execution of all steps of the innate courtship ritual. Here, we eliminate Fru(M) expression in one group of about 60 neurons in the Drosophila central nervous system and observe severely contracted courtship behaviour, including rapid courtship initiation, absence of orienting and tapping, and the simultaneous occurrence of wing vibration, licking and attempted copulation. Our results identify a small group of median bundle neurons, that in wild-type Drosophila appropriately trigger the sequential execution of the component behaviours that constitute the Drosophila courtship ritual.


Asunto(s)
Sistema Nervioso Central/citología , Sistema Nervioso Central/fisiología , Proteínas de Drosophila , Drosophila melanogaster/fisiología , Neuronas/fisiología , Conducta Sexual Animal/fisiología , Animales , Copulación/fisiología , Drosophila melanogaster/genética , Femenino , Masculino , Haz Prosencefálico Medial/citología , Haz Prosencefálico Medial/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Trends Neurosci ; 29(8): 444-51, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16806511

RESUMEN

Innate behaviors offer a unique opportunity to use genetic analysis to dissect and characterize the neural substrates of complex behavioral programs. Courtship in Drosophila involves a complex series of stereotyped behaviors that include numerous exchanges of multimodal sensory information over time. As we will discuss in this review, recent work has demonstrated that male-specific expression of Fruitless transcription factors (Fru(M) proteins) is necessary and sufficient to confer the potential for male courtship behaviors. Fru(M) factors program neurons of the male central and peripheral nervous systems whose function is dedicated to sexual behaviors. This circuitry seems to integrate sensory information to define behavioral states and regulate conserved neural elements for sex-specific behavioral output. The principles that govern the circuitry specified by Fru(M) expression might also operate in subcortical networks that govern innate behaviors in mammals.


Asunto(s)
Conducta/fisiología , Genética Conductual , Instinto , Red Nerviosa/fisiología , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Humanos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Conducta Sexual Animal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Trends Genet ; 18(10): 510-6, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12350340

RESUMEN

There has recently been a revolution in our understanding of how the Drosophila sex-determination hierarchy generates somatic sexual dimorphism. Most significantly, the sex hierarchy has been shown to modulate the activities of well-known signaling molecules (FGF, Wnt and TGF beta proteins) and transcription factors (BAB and DAC) to direct various sex-specific aspects of growth and differentiation. As some of the genes encoding these proteins are also the targets of Hox gene action, these and other findings are revealing the levels at which the sex determination and Hox patterning pathways are integrated to control growth, morphogenesis and differentiation.


Asunto(s)
Drosophila/crecimiento & desarrollo , Drosophila/genética , Animales , Tipificación del Cuerpo/genética , Femenino , Genes de Insecto , Genitales/crecimiento & desarrollo , Masculino , Caracteres Sexuales , Procesos de Determinación del Sexo , Diferenciación Sexual/genética
14.
PLoS Biol ; 2(11): e341, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15502872

RESUMEN

It has been proposed that dosage compensation in Drosophila males occurs by binding of two core proteins, MSL-1 and MSL-2, to a set of 35-40 X chromosome "entry sites" that serve to nucleate mature complexes, termed compensasomes, which then spread to neighboring sequences to double expression of most X-linked genes. Here we show that any piece of the X chromosome with which compensasomes are associated in wild-type displays a normal pattern of compensasome binding when inserted into an autosome, independently of the presence of an entry site. Furthermore, in chromosomal rearrangements in which a piece of X chromosome is inserted into an autosome, or a piece of autosome is translocated to the X chromosome, we do not observe spreading of compensasomes to regions of autosomes that have been juxtaposed to X chromosomal material. Taken together these results suggest that spreading is not involved in dosage compensation and that nothing distinguishes an entry site from the other X chromosome sites occupied by compensasomes beyond their relative affinities for compensasomes. We propose a new model in which the distribution of compensasomes along the X chromosome is achieved according to the hierarchical affinities of individual binding sites.


Asunto(s)
Compensación de Dosificación (Genética) , Drosophila/genética , Cromosoma X/genética , Cromosoma X/ultraestructura , Animales , Sitios de Unión , Cromosomas/ultraestructura , Cruzamientos Genéticos , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Femenino , Genotipo , Hibridación in Situ , Masculino , Microscopía Fluorescente , Proteínas Nucleares/genética , Unión Proteica , Factores Sexuales , Factores de Transcripción/genética , Translocación Genética
15.
Nat Commun ; 8(1): 154, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28754889

RESUMEN

Animals execute one particular behavior among many others in a context-dependent manner, yet the mechanisms underlying such behavioral choice remain poorly understood. Here we studied how two fundamental behaviors, sex and sleep, interact at genetic and neuronal levels in Drosophila. We show that an increased need for sleep inhibits male sexual behavior by decreasing the activity of the male-specific P1 neurons that coexpress the sex determination genes fru M and dsx, but does not affect female sexual behavior. Further, we delineate a sex-specific neuronal circuit wherein the P1 neurons encoding increased courtship drive suppressed male sleep by forming mutually excitatory connections with the fru M -positive sleep-controlling DN1 neurons. In addition, we find that FRUM regulates male courtship and sleep through distinct neural substrates. These studies reveal the genetic and neuronal basis underlying the sex-specific interaction between sleep and sexual behaviors in Drosophila, and provide insights into how competing behaviors are co-regulated.Genes and circuits involved in sleep and sexual arousal have been extensively studied in Drosophila. Here the authors identify the sex determination genes fruitless and doublesex, and a sex-specific P1-DN1 neuronal feedback that governs the interaction between these competing behaviors.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Conducta Sexual Animal/fisiología , Sueño/genética , Factores de Transcripción/genética , Animales , Cortejo , Drosophila melanogaster/fisiología , Femenino , Masculino , Neuronas/fisiología , Caracteres Sexuales , Sueño/fisiología
16.
PLoS One ; 11(10): e0164516, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27764141

RESUMEN

An animal's ability to learn and to form memories is essential for its survival. The fruit fly has proven to be a valuable model system for studies of learning and memory. One learned behavior in fruit flies is courtship conditioning. In Drosophila courtship conditioning, male flies learn not to court females during training with an unreceptive female. He retains a memory of this training and for several hours decreases courtship when subsequently paired with any female. Courtship conditioning is a unique learning paradigm; it uses a positive-valence stimulus, a female fly, to teach a male to decrease an innate behavior, courtship of the female. As such, courtship conditioning is not clearly categorized as either appetitive or aversive conditioning. The mushroom body (MB) region in the fruit fly brain is important for several types of memory; however, the precise subsets of intrinsic and extrinsic MB neurons necessary for courtship conditioning are unknown. Here, we disrupted synaptic signaling by driving a shibirets effector in precise subsets of MB neurons, defined by a collection of split-GAL4 drivers. Out of 75 lines tested, 32 showed defects in courtship conditioning memory. Surprisingly, we did not have any hits in the γ lobe Kenyon cells, a region previously implicated in courtship conditioning memory. We did find that several γ lobe extrinsic neurons were necessary for courtship conditioning memory. Overall, our memory hits in the dopaminergic neurons (DANs) and the mushroom body output neurons were more consistent with results from appetitive memory assays than aversive memory assays. For example, protocerebral anterior medial DANs were necessary for courtship memory, similar to appetitive memory, while protocerebral posterior lateral 1 (PPL1) DANs, important for aversive memory, were not needed. Overall, our results indicate that the MB circuits necessary for courtship conditioning memory coincide with circuits necessary for appetitive memory.


Asunto(s)
Conducta Apetitiva/fisiología , Condicionamiento Clásico/fisiología , Drosophila/fisiología , Memoria/fisiología , Cuerpos Pedunculados/metabolismo , Animales , Cortejo , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Masculino , Conducta Sexual Animal/fisiología , Factores de Transcripción/metabolismo
17.
Genetics ; 162(4): 1703-24, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12524343

RESUMEN

The fruitless (fru) gene in Drosophila melanogaster is a multifunctional gene that has sex-specific functions in the regulation of male sexual behavior and sex-nonspecific functions affecting adult viability and external morphology. While much attention has focused on fru's sex-specific roles, less is known about its sex-nonspecific functions. We have examined fru's sex-nonspecific role in embryonic neural development. fru transcripts from sex-nonspecific promoters are expressed beginning at the earliest stages of neurogenesis, and Fru proteins are present in both neurons and glia. In embryos that lack most or all fru function, FasII- and BP102-positive axons have defasciculation defects and grow along abnormal pathways in the CNS. These defects in axonal projections in fru mutants were rescued by the expression of specific UAS-fru transgenes under the control of a pan-neuronal scabrous-GAL4 driver. Our results suggest that one of fru's sex-nonspecific roles is to regulate the pathfinding ability of axons in the embryonic CNS.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Genes de Insecto , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Axones/ultraestructura , Secuencia de Bases , Tipificación del Cuerpo/genética , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Mapeo Cromosómico , ADN Complementario/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Heterocigoto , Homocigoto , Masculino , Mutación , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/citología , Neuronas/metabolismo , Sistema Nervioso Periférico/embriología , Sistema Nervioso Periférico/metabolismo , Fenotipo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo
18.
Elife ; 42015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26390382

RESUMEN

Animals use acoustic signals across a variety of social behaviors, particularly courtship. In Drosophila, song is detected by antennal mechanosensory neurons and further processed by second-order aPN1/aLN(al) neurons. However, little is known about the central pathways mediating courtship hearing. In this study, we identified a male-specific pathway for courtship hearing via third-order ventrolateral protocerebrum Projection Neuron 1 (vPN1) neurons and fourth-order pC1 neurons. Genetic inactivation of vPN1 or pC1 disrupts song-induced male-chaining behavior. Calcium imaging reveals that vPN1 responds preferentially to pulse song with long inter-pulse intervals (IPIs), while pC1 responses to pulse song closely match the behavioral chaining responses at different IPIs. Moreover, genetic activation of either vPN1 or pC1 induced courtship chaining, mimicking the behavioral response to song. These results outline the aPN1-vPN1-pC1 pathway as a labeled line for the processing and transformation of courtship song in males.


Asunto(s)
Cortejo , Drosophila/anatomía & histología , Drosophila/fisiología , Conducta Sexual Animal , Animales , Percepción Auditiva , Masculino , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología
19.
Curr Biol ; 24(10): 1039-49, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24794294

RESUMEN

BACKGROUND: During courtship, male Drosophila melanogaster sing a multipart courtship song to female flies. This song is of particular interest because (1) it is species specific and varies widely within the genus, (2) it is a gating stimulus for females, who are sensitive detectors of conspecific song, and (3) it is the only sexual signal that is under both neural and genetic control. This song is perceived via mechanosensory neurons in the antennal Johnston's organ, which innervate the antennal mechanosensory and motor center (AMMC) of the brain. However, AMMC outputs that are responsible for detection and discrimination of conspecific courtship song remain unknown. RESULTS: Using a large-scale anatomical screen of AMMC interneurons, we identify seven projection neurons (aPNs) and five local interneurons (aLNs) that outline a complex architecture for the ascending mechanosensory pathway. Neuronal inactivation and hyperactivation during behavior reveal that only two classes of interneurons are necessary for song responses--the projection neuron aPN1 and GABAergic interneuron aLN(al). These neurons are necessary in both male and female flies. Physiological recordings in aPN1 reveal the integration of courtship song as a function of pulse rate and outline an intracellular transfer function that likely facilitates the response to conspecific song. CONCLUSIONS: These results reveal a critical pathway for courtship hearing in male and female flies, in which both aLN(al) and aPN1 mediate the detection of conspecific song. The pathways arising from these neurons likely serve as a critical neural substrate for behavioral reproductive isolation in D. melanogaster.


Asunto(s)
Comunicación Animal , Percepción Auditiva , Drosophila melanogaster/fisiología , Animales , Cortejo , Femenino , Masculino , Vías Nerviosas/fisiología
20.
Neuron ; 83(1): 149-63, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24991959

RESUMEN

Drosophila melanogaster females respond to male courtship by either rejecting the male or allowing copulation. The neural mechanisms underlying these female behaviors likely involve the integration of sensory information in the brain. Because doublesex (dsx) controls other aspects of female differentiation, we asked whether dsx-expressing neurons mediate virgin female receptivity to courting males. Using intersectional techniques to manipulate the activities of defined subsets of dsx-expressing neurons, we found that activation of neurons in either the pCd or pC1 clusters promotes receptivity, while silencing these neurons makes females unreceptive. Furthermore, pCd and pC1 neurons physiologically respond to the male-specific pheromone cis-vaccenyl acetate (cVA), while pC1 neurons also respond to male courtship song. The pCd and pC1 neurons expressing dsx in females do not express transcripts from the fruitless (fru) P1 promoter. Thus, virgin female receptivity is controlled at least in part by neurons that are distinct from those governing male courtship.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Proteínas de Drosophila/biosíntesis , Regulación de la Expresión Génica , Neuronas/fisiología , Conducta Sexual Animal/fisiología , Animales , Animales Modificados Genéticamente , Encéfalo/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA