Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34168079

RESUMEN

Carbohydrate active enzymes (CAZymes) are vital for the lignocellulose-based biorefinery. The development of hypersecreting fungal protein production hosts is therefore a major aim for both academia and industry. However, despite advances in our understanding of their regulation, the number of promising candidate genes for targeted strain engineering remains limited. Here, we resequenced the genome of the classical hypersecreting Neurospora crassa mutant exo-1 and identified the causative point of mutation to reside in the F-box protein-encoding gene, NCU09899. The corresponding deletion strain displayed amylase and invertase activities exceeding those of the carbon catabolite derepressed strain Δcre-1, while glucose repression was still mostly functional in Δexo-1 Surprisingly, RNA sequencing revealed that while plant cell wall degradation genes are broadly misexpressed in Δexo-1, only a small fraction of CAZyme genes and sugar transporters are up-regulated, indicating that EXO-1 affects specific regulatory factors. Aiming to elucidate the underlying mechanism of enzyme hypersecretion, we found the high secretion of amylases and invertase in Δexo-1 to be completely dependent on the transcriptional regulator COL-26. Furthermore, misregulation of COL-26, CRE-1, and cellular carbon and nitrogen metabolism was confirmed by proteomics. Finally, we successfully transferred the hypersecretion trait of the exo-1 disruption by reverse engineering into the industrially deployed fungus Myceliophthora thermophila using CRISPR-Cas9. Our identification of an important F-box protein demonstrates the strength of classical mutants combined with next-generation sequencing to uncover unanticipated candidates for engineering. These data contribute to a more complete understanding of CAZyme regulation and will facilitate targeted engineering of hypersecretion in further organisms of interest.


Asunto(s)
Proteínas F-Box/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Ingeniería Genética , Neurospora crassa/enzimología , Neurospora crassa/genética , Amilasas/metabolismo , Carbono/farmacología , Represión Catabólica , Proteínas F-Box/metabolismo , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mutación/genética , Nitrógeno/metabolismo , Fenotipo , Secuenciación Completa del Genoma , Xilosa/metabolismo , beta-Fructofuranosidasa/metabolismo
2.
Anal Chem ; 94(15): 5909-5917, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35380435

RESUMEN

SARS-CoV-2 cellular infection is mediated by the heavily glycosylated spike protein. Recombinant versions of the spike protein and the receptor-binding domain (RBD) are necessary for seropositivity assays and can potentially serve as vaccines against viral infection. RBD plays key roles in the spike protein's structure and function, and thus, comprehensive characterization of recombinant RBD is critically important for biopharmaceutical applications. Liquid chromatography coupled to mass spectrometry has been widely used to characterize post-translational modifications in proteins, including glycosylation. Most studies of RBDs were performed at the proteolytic peptide (bottom-up proteomics) or released glycan level because of the technical challenges in resolving highly heterogeneous glycans at the intact protein level. Herein, we evaluated several online separation techniques: (1) C2 reverse-phase liquid chromatography (RPLC), (2) capillary zone electrophoresis (CZE), and (3) acrylamide-based monolithic hydrophilic interaction chromatography (HILIC) to separate intact recombinant RBDs with varying combinations of glycosylations (glycoforms) for top-down mass spectrometry (MS). Within the conditions we explored, the HILIC method was superior to RPLC and CZE at separating RBD glycoforms, which differ significantly in neutral glycan groups. In addition, our top-down analysis readily captured unexpected modifications (e.g., cysteinylation and N-terminal sequence variation) and low abundance, heavily glycosylated proteoforms that may be missed by using glycopeptide data alone. The HILIC top-down MS platform holds great potential in resolving heterogeneous glycoproteins for facile comparison of biosimilars in quality control applications.


Asunto(s)
Biosimilares Farmacéuticos , COVID-19 , Cromatografía Liquida , Cromatografía de Fase Inversa/métodos , Glicoproteínas/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Espectrometría de Masas , Polisacáridos/análisis , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
3.
Appl Microbiol Biotechnol ; 106(1): 287-300, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34889980

RESUMEN

Wild-type strains of Aspergillus oryzae develop yellow, yellow-green, green, or brown conidia. Previous reports suggested that the conidiation initiates with the biosynthesis of a yellow pigment YWA1 from acetyl-CoA by a polyketide synthase encoded by wA (AO090102000545). This is followed by the conversion to other pigment by a laccase encoded by yA (AO090011000755). Based on orthologous pathways in other Aspergilli, it is reasonable to hypothesize that in addition to yA, AO090102000546 encoding laccase and AO090005000332 encoding Ayg1-like hydrolase play a role in A. oryzae conidial pigment biosynthesis. However, the involvement of these two genes in conidial pigmentation remains unclear. In this study, we tested this hypothesis by assessing the conidial colors of both disruption and overexpression mutants to verify whether AO090102000546 and AO090005000332 were associated with the conidial pigmentation. Observation of single, double, and triple disruptants of these three genes suggested that conidial pigments were synthesized by two laccase genes, AO090011000755 and AO090102000546, whereas Ayg1-like hydrolase gene AO090005000332 was proven to have no obvious association with the synthesis. This was corroborated by observing the phenotype of each overexpression mutant. Interestingly, AO090005000332 overexpression mutant produced smoky yellow-green conidia, different from the wild-type strain. Thus, the AO090005000332-encoded protein is likely to maintain the enzymatic activity. However, the expression level was observed to be one-third of that of AO090102000546 and one-seventh of that of AO090011000755. Consequently, apparent lack of obvious contribution of AO090005000332 to conidial pigmentation could be attributed to its low expression level. Expression analysis indicated similar profiles in several wild-type strains. KEY POINTS: • Conidial pigment biosynthesis after YWA1 mainly involves two laccases in A. oryzae. • Ayg1-like hydrolase in A. oryzae is not obviously involved in conidial pigmentation. • Conidial color is deemed dependent on expression level of two laccases and hydrolase.


Asunto(s)
Aspergillus oryzae , Lacasa , Aspergillus oryzae/genética , Proteínas Fúngicas/genética , Genes Fúngicos , Lacasa/genética , Pigmentación/genética , Esporas Fúngicas/genética
4.
Proc Natl Acad Sci U S A ; 115(4): E753-E761, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29317534

RESUMEN

The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories, model organisms, and human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species (A. campestris, A. novofumigatus, A. ochraceoroseus, and A. steynii) have been whole-genome PacBio sequenced to provide genetic references in three Aspergillus sections. A. taichungensis and A. candidus also were sequenced for SM elucidation. Thirteen Aspergillus genomes were analyzed with comparative genomics to determine phylogeny and genetic diversity, showing that each presented genome contains 15-27% genes not found in other sequenced Aspergilli. In particular, A. novofumigatus was compared with the pathogenic species A. fumigatus This suggests that A. novofumigatus can produce most of the same allergens, virulence, and pathogenicity factors as A. fumigatus, suggesting that A. novofumigatus could be as pathogenic as A. fumigatus Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences, and predictive algorithms. We thus identify putative SM clusters for aflatoxin, chlorflavonin, and ochrindol in A. ochraceoroseus, A. campestris, and A. steynii, respectively, and novofumigatonin, ent-cycloechinulin, and epi-aszonalenins in A. novofumigatus Our study delivers six fungal genomes, showing the large diversity found in the Aspergillus genus; highlights the potential for discovery of beneficial or harmful SMs; and supports reports of A. novofumigatus pathogenicity. It also shows how biological, biochemical, and genomic information can be combined to identify genes involved in the biosynthesis of specific SMs.


Asunto(s)
Aflatoxinas/genética , Aspergillus/genética , Aspergillus/metabolismo , Familia de Multigenes , Metabolismo Secundario/genética , Aflatoxinas/biosíntesis , Alérgenos/genética , Aspergillus/patogenicidad , Metilación de ADN , Evolución Molecular , Flavonoides/biosíntesis , Genoma Fúngico , Alcaloides Indólicos/metabolismo , Filogenia , Terpenos/metabolismo , Secuenciación Completa del Genoma
5.
Environ Microbiol ; 22(3): 1154-1166, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31876091

RESUMEN

Saprobic fungi, such as Aspergillus niger, grow as colonies consisting of a network of branching and fusing hyphae that are often considered to be relatively uniform entities in which nutrients can freely move through the hyphae. In nature, different parts of a colony are often exposed to different nutrients. We have investigated, using a multi-omics approach, adaptation of A. niger colonies to spatially separated and compositionally different plant biomass substrates. This demonstrated a high level of intra-colony differentiation, which closely matched the locally available substrate. The part of the colony exposed to pectin-rich sugar beet pulp and to xylan-rich wheat bran showed high pectinolytic and high xylanolytic transcript and protein levels respectively. This study therefore exemplifies the high ability of fungal colonies to differentiate and adapt to local conditions, ensuring efficient use of the available nutrients, rather than maintaining a uniform physiology throughout the colony.


Asunto(s)
Adaptación Fisiológica , Aspergillus niger/metabolismo , Carbono/metabolismo , Biomasa , Hifa/metabolismo , Pectinas/metabolismo
6.
BMC Genomics ; 19(1): 214, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29566661

RESUMEN

BACKGROUND: Plant biomass is the most abundant carbon source for many fungal species. In the biobased industry fungi, are used to produce lignocellulolytic enzymes to degrade agricultural waste biomass. Here we evaluated if it would be possible to create an Aspergillus nidulans strain that releases, but does not metabolize hexoses from plant biomass. For this purpose, metabolic mutants were generated that were impaired in glycolysis, by using hexokinase (hxkA) and glucokinase (glkA) negative strains. To prevent repression of enzyme production due to the hexose accumulation, strains were generated that combined these mutations with a deletion in creA, the repressor involved in regulating preferential use of different carbon catabolic pathways. RESULTS: Phenotypic analysis revealed reduced growth for the hxkA1 glkA4 mutant on wheat bran. However, hexoses did not accumulate during growth of the mutants on wheat bran, suggesting that glucose metabolism is re-routed towards alternative carbon catabolic pathways. The creAΔ4 mutation in combination with preventing initial phosphorylation in glycolysis resulted in better growth than the hxkA/glkA mutant and an increased expression of pentose catabolic and pentose phosphate pathway genes. This indicates that the reduced ability to use hexoses as carbon sources created a shift towards the pentose fraction of wheat bran as a major carbon source to support growth. CONCLUSION: Blocking the direct entry of hexoses to glycolysis activates alternative metabolic conversion of these sugars in A. nidulans during growth on plant biomass, but also upregulates conversion of other sugars, such as pentoses.


Asunto(s)
Aspergillus nidulans/metabolismo , Glucólisis , Hexosas/metabolismo , Pentosas/metabolismo , Aspergillus nidulans/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Glucoquinasa/genética , Glucoquinasa/metabolismo , Hexoquinasa/genética , Hexoquinasa/metabolismo , Metabolómica
7.
Environ Microbiol ; 20(11): 4141-4156, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30246402

RESUMEN

White-rot fungi, such as Dichomitus squalens, degrade all wood components and inhabit mixed-wood forests containing both soft- and hardwood species. In this study, we evaluated how D. squalens responded to the compositional differences in softwood [guaiacyl (G) lignin and higher mannan content] and hardwood [syringyl/guaiacyl (S/G) lignin and higher xylan content] using semi-natural solid cultures. Spruce (softwood) and birch (hardwood) sticks were degraded by D. squalens as measured by oxidation of the lignins using 2D-NMR. The fungal response as measured by transcriptomics, proteomics and enzyme activities showed a partial tailoring to wood composition. Mannanolytic transcripts and proteins were more abundant in spruce cultures, while a proportionally higher xylanolytic activity was detected in birch cultures. Both wood types induced manganese peroxidases to a much higher level than laccases, but higher transcript and protein levels of the manganese peroxidases were observed on the G-lignin rich spruce. Overall, the molecular responses demonstrated a stronger adaptation to the spruce rather than birch composition, possibly because D. squalens is mainly found degrading softwoods in nature, which supports the ability of the solid wood cultures to reflect the natural environment.


Asunto(s)
Basidiomycota/metabolismo , Polyporaceae/metabolismo , Madera/química , Basidiomycota/enzimología , Basidiomycota/genética , Betula/química , Betula/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lacasa/genética , Lacasa/metabolismo , Lignina/química , Lignina/metabolismo , Mananos/química , Mananos/metabolismo , Peroxidasas/genética , Peroxidasas/metabolismo , Picea/química , Picea/microbiología , Madera/microbiología
8.
Appl Microbiol Biotechnol ; 102(20): 8621-8628, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30078136

RESUMEN

The secretion of enzymes used by fungi to digest their environment has been exploited by humans for centuries for food and beverage production. More than a century after the first biotechnology patent, we know that the enzyme cocktails secreted by these amazing organisms have tremendous use across a number of industrial processes. Secreting the maximum titer of enzymes is critical to the economic feasibility of these processes. Traditional mutagenesis and screening approaches have generated the vast majority of strains used by industry for the production of enzymes. Until the emergence of economical next generation DNA sequencing platforms, the majority of the genes mutated in these screens remained uncharacterized at the sequence level. In addition, mutagenesis comes with a cost to an organism's fitness, making tractable rational strain design approaches an attractive alternative. As an alternative to traditional mutagenesis and screening, controlled manipulation of multiple genes involved in processes that impact the ability of a fungus to sense its environment, regulate transcription of enzyme-encoding genes, and efficiently secrete these proteins will allow for rational design of improved fungal protein production strains.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Hongos/metabolismo , Microbiología Industrial , Proteínas Fúngicas/genética , Hongos/genética , Ingeniería Metabólica
9.
Appl Microbiol Biotechnol ; 102(4): 1797-1807, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29305699

RESUMEN

Plant biomass, once reduced to its composite sugars, can be converted to fuel substitutes. One means of overcoming the recalcitrance of lignocellulose is pretreatment followed by enzymatic hydrolysis. However, currently available commercial enzyme cocktails are inhibited in the presence of residual pretreatment chemicals. Recent studies have identified a number of cellulolytic enzymes from bacteria that are tolerant to pretreatment chemicals such as ionic liquids. The challenge now is generation of these enzymes in copious amounts, an arena where fungal organisms such as Aspergillus niger have proven efficient. Fungal host strains still need to be engineered to increase production titers of heterologous protein over native enzymes, which has been a difficult task. Here, we developed a forward genetics screen coupled with whole-genome resequencing to identify specific lesions responsible for a protein hyper-production phenotype in A. niger. This strategy successfully identified novel targets, including a low-affinity glucose transporter, MstC, whose deletion significantly improved secretion of recombinant proteins driven by a glucoamylase promoter.


Asunto(s)
Aspergillus niger/enzimología , Aspergillus niger/genética , Enzimas/biosíntesis , Enzimas/genética , Expresión Génica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Pruebas Genéticas , Mutagénesis , Mutación , Secuenciación Completa del Genoma
10.
Proc Natl Acad Sci U S A ; 112(51): 15707-12, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26647184

RESUMEN

Mutants in the period-1 (prd-1) gene, characterized by a recessive allele, display a reduced growth rate and period lengthening of the developmental cycle controlled by the circadian clock. We refined the genetic location of prd-1 and used whole genome sequencing to find the mutation defining it, confirming the identity of prd-1 by rescuing the mutant circadian phenotype via transformation. PRD-1 is an RNA helicase whose orthologs, DDX5 [DEAD (Asp-Glu-Ala-Asp) Box Helicase 5] and DDX17 in humans and DBP2 (Dead Box Protein 2) in yeast, are implicated in various processes, including transcriptional regulation, elongation, and termination, ribosome biogenesis, and mRNA decay. Although prd-1 mutants display a long period (∼25 h) circadian developmental cycle, they interestingly display a WT period when the core circadian oscillator is tracked using a frq-luciferase transcriptional fusion under conditions of limiting nutritional carbon; the core oscillator in the prd-1 mutant strain runs with a long period under glucose-sufficient conditions. Thus, PRD-1 clearly impacts the circadian oscillator and is not only part of a metabolic oscillator ancillary to the core clock. PRD-1 is an essential protein, and its expression is neither light-regulated nor clock-regulated. However, it is transiently induced by glucose; in the presence of sufficient glucose, PRD-1 is in the nucleus until glucose runs out, which elicits its disappearance from the nucleus. Because circadian period length is carbon concentration-dependent, prd-1 may be formally viewed as a clock mutant with defective nutritional compensation of circadian period length.


Asunto(s)
Relojes Circadianos/fisiología , Neurospora crassa/fisiología , Proteínas Circadianas Period/genética , ARN Helicasas/fisiología , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Carbono/metabolismo , Glucosa/metabolismo , Datos de Secuencia Molecular , Proteínas Circadianas Period/fisiología
11.
Appl Environ Microbiol ; 83(22)2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28916559

RESUMEN

The filamentous fungus Trichoderma reesei is found predominantly in the tropics but also in more temperate regions, such as Europe, and is widely known as a producer of large amounts of plant cell wall-degrading enzymes. We sequenced the genome of the sexually competent isolate CBS999.97, which is phenotypically different from the female sterile strain QM6a but can cross sexually with QM6a. Transcriptome data for growth on cellulose showed that entire carbohydrate-active enzyme (CAZyme) families are consistently differentially regulated between these strains. We evaluated backcrossed strains of both mating types, which acquired female fertility from CBS999.97 but maintained a mostly QM6a genetic background, and we could thereby distinguish between the effects of strain background and female fertility or mating type. We found clear regulatory differences associated with female fertility and female sterility, including regulation of CAZyme and transporter genes. Analysis of carbon source utilization, transcriptomes, and secondary metabolites in these strains revealed that only a few changes in gene regulation are consistently correlated with different mating types. Different strain backgrounds (QM6a versus CBS999.97) resulted in the most significant alterations in the transcriptomes and in carbon source utilization, with decreased growth of CBS999.97 on several amino acids (for example proline or alanine), which further correlated with the downregulation of genes involved in the respective pathways. In combination, our findings support a role of fertility-associated processes in physiology and gene regulation and are of high relevance for the use of sexual crossing in combining the characteristics of two compatible strains or quantitative trait locus (QTL) analysis.IMPORTANCETrichoderma reesei is a filamentous fungus with a high potential for secretion of plant cell wall-degrading enzymes. We sequenced the genome of the fully fertile field isolate CBS999.97 and analyzed its gene regulation characteristics in comparison with the commonly used laboratory wild-type strain QM6a, which is not female fertile. Additionally, we also evaluated fully fertile strains with genotypes very close to that of QM6a in order to distinguish between strain-specific and fertility-specific characteristics. We found that QM6a and CBS999.97 clearly differ in their growth patterns on different carbon sources, CAZyme gene regulation, and secondary metabolism. Importantly, we found altered regulation of 90 genes associated with female fertility, including CAZyme genes and transporter genes, but only minor mating type-dependent differences. Hence, when using sexual crossing in research and for strain improvement, it is important to consider female fertile and female sterile strains for comparison with QM6a and to achieve optimal performance.


Asunto(s)
Celulasa/genética , Proteínas Fúngicas/genética , Proteínas de Transporte de Membrana/genética , Trichoderma/enzimología , Celulasa/metabolismo , Celulosa/metabolismo , Proteínas Fúngicas/metabolismo , Genes del Tipo Sexual de los Hongos , Proteínas de Transporte de Membrana/metabolismo , Transcripción Genética , Trichoderma/genética , Trichoderma/crecimiento & desarrollo
12.
Phys Biol ; 14(5): 055003, 2017 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-28675379

RESUMEN

Comprehensive and predictive simulation of coupled reaction networks has long been a goal of biology and other fields. Currently, metabolic network models that utilize enzyme mass action kinetics have predictive power but are limited in scope and application by the fact that the determination of enzyme rate constants is laborious and low throughput. We present a statistical thermodynamic formulation of the law of mass action for coupled reactions at both steady states and non-stationary states. The formulation uses chemical potentials instead of rate constants. When used to model deterministic systems, the method corresponds to a rescaling of the time dependent reactions in such a way that steady states can be reached on the same time scale but with significantly fewer computational steps. The relationships between reaction affinities, free energy changes and generalized detailed balance are central to the discussion. The significance for applications in systems biology are discussed as is the concept and assumption of maximum entropy production rate as a biological principle that links thermodynamics to natural selection.


Asunto(s)
Cinética , Biología de Sistemas/métodos , Termodinámica , Simulación por Computador , Entropía , Redes y Vías Metabólicas , Modelos Biológicos
13.
Proc Natl Acad Sci U S A ; 111(27): 9923-8, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958869

RESUMEN

Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.


Asunto(s)
Basidiomycota/genética , Basidiomycota/metabolismo , Genoma Fúngico , Madera , Basidiomycota/clasificación , Lignina/metabolismo , Datos de Secuencia Molecular , Filogenia
14.
BMC Genomics ; 17: 138, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26911370

RESUMEN

BACKGROUND: Yarrowia lipolytica is an oleaginous ascomycete yeast that stores lipids in response to limitation of nitrogen. While the enzymatic pathways responsible for neutral lipid accumulation in Y. lipolytica are well characterized, regulation of these pathways has received little attention. We therefore sought to characterize the response to nitrogen limitation at system-wide levels, including the proteome, phosphoproteome and metabolome, to better understand how this organism regulates and controls lipid metabolism and to identify targets that may be manipulated to improve lipid yield. RESULTS: We found that ribosome structural genes are down-regulated under nitrogen limitation, during which nitrogen containing compounds (alanine, putrescine, spermidine and urea) are depleted and sugar alcohols and TCA cycle intermediates accumulate (citrate, fumarate and malate). We identified 1219 novel phosphorylation sites in Y. lipolytica, 133 of which change in their abundance during nitrogen limitation. Regulatory proteins, including kinases and DNA binding proteins, are particularly enriched for phosphorylation. Within lipid synthesis pathways, we found that ATP-citrate lyase, acetyl-CoA carboxylase and lecithin cholesterol acyl transferase are phosphorylated during nitrogen limitation while many of the proteins involved in ß-oxidation are down-regulated, suggesting that storage lipid accumulation may be regulated by phosphorylation of key enzymes. Further, we identified short DNA elements that associate specific transcription factor families with up- and down-regulated genes. CONCLUSIONS: Integration of metabolome, proteome and phosphoproteome data identifies lipid accumulation in response to nitrogen limitation as a two-fold result of increased production of acetyl-CoA from excess citrate and decreased capacity for ß-oxidation.


Asunto(s)
Metabolismo de los Lípidos , Nitrógeno/metabolismo , Yarrowia/metabolismo , Acetilcoenzima A/metabolismo , Ácido Cítrico/metabolismo , ADN de Hongos/genética , Proteínas Fúngicas/metabolismo , Metaboloma , Oxidación-Reducción , Fosforilación , Proteoma , Yarrowia/genética
15.
Nature ; 464(7287): 367-73, 2010 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-20237561

RESUMEN

Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective.


Asunto(s)
Cromosomas Fúngicos/genética , Fusarium/genética , Fusarium/patogenicidad , Genoma Fúngico/genética , Genómica , Evolución Molecular , Fusarium/clasificación , Interacciones Huésped-Parásitos/genética , Familia de Multigenes/genética , Fenotipo , Filogenia , Proteoma/genética , Análisis de Secuencia de ADN , Sintenía/genética , Virulencia/genética
16.
PLoS Genet ; 9(1): e1003233, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23357949

RESUMEN

The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five percent of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25× higher than those between inbred lines and 50× lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP-encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.


Asunto(s)
Ascomicetos/genética , Péptido Sintasas/genética , Enfermedades de las Plantas , Sintasas Poliquetidas/genética , Polimorfismo de Nucleótido Simple/genética , Ascomicetos/patogenicidad , Secuencia de Bases , Evolución Molecular , Variación Genética , Genoma Fúngico , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Virulencia/genética
17.
BMC Genomics ; 16: 326, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25909478

RESUMEN

BACKGROUND: Trichoderma reesei is the main industrial source of cellulases and hemicellulases required for the hydrolysis of biomass to simple sugars, which can then be used in the production of biofuels and biorefineries. The highly productive strains in use today were generated by classical mutagenesis. As byproducts of this procedure, mutants were generated that turned out to be unable to produce cellulases. In order to identify the mutations responsible for this inability, we sequenced the genome of one of these strains, QM9136, and compared it to that of its progenitor T. reesei QM6a. RESULTS: In QM9136, we detected a surprisingly low number of mutagenic events in the promoter and coding regions of genes, i.e. only eight indels and six single nucleotide variants. One of these indels led to a frame-shift in the Zn2Cys6 transcription factor XYR1, the general regulator of cellulase and xylanase expression, and resulted in its C-terminal truncation by 140 amino acids. Retransformation of strain QM9136 with the wild-type xyr1 allele fully recovered the ability to produce cellulases, and is thus the reason for the cellulase-negative phenotype. Introduction of an engineered xyr1 allele containing the truncating point mutation into the moderate producer T. reesei QM9414 rendered this strain also cellulase-negative. The correspondingly truncated XYR1 protein was still able to enter the nucleus, but failed to be expressed over the basal constitutive level. CONCLUSION: The missing 140 C-terminal amino acids of XYR1 are therefore responsible for its previously observed auto-regulation which is essential for cellulases to be expressed. Our data present a working example of the use of genome sequencing leading to a functional explanation of the QM9136 cellulase-negative phenotype.


Asunto(s)
Celulasa/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Factores de Transcripción/genética , Trichoderma/enzimología , Trichoderma/genética , Alelos , Núcleo Celular/metabolismo , Celulasa/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Análisis de Secuencia de ADN , Factores de Transcripción/química , Factores de Transcripción/metabolismo
18.
Appl Microbiol Biotechnol ; 99(7): 3103-13, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25564035

RESUMEN

Fatty acids are attractive molecules as source materials for the production of biodiesel fuel. Previously, we attained a 2.4-fold increase in fatty acid production by increasing the expression of fatty acid synthesis-related genes in Aspergillus oryzae. In this study, we achieved an additional increase in the production of fatty acids by disrupting a predicted acyl-CoA synthetase gene in A. oryzae. The A. oryzae genome is predicted to encode six acyl-CoA synthetase genes and disruption of AO090011000642, one of the six genes, resulted in a 9.2-fold higher accumulation (corresponding to an increased production of 0.23 mmol/g dry cell weight) of intracellular fatty acid in comparison to the wild-type strain. Furthermore, by introducing a niaD marker from Aspergillus nidulans to the disruptant, as well as changing the concentration of nitrogen in the culture medium from 10 to 350 mM, fatty acid productivity reached 0.54 mmol/g dry cell weight. Analysis of the relative composition of the major intracellular free fatty acids caused by disruption of AO090011000642 in comparison to the wild-type strain showed an increase in stearic acid (7 to 26 %), decrease in linoleic acid (50 to 27 %), and no significant changes in palmitic or oleic acid (each around 20-25 %).


Asunto(s)
Aspergillus oryzae/genética , Aspergillus oryzae/metabolismo , Coenzima A Ligasas/genética , Ácidos Grasos/metabolismo , Cromatografía Líquida de Alta Presión , Coenzima A Ligasas/metabolismo , Ácidos Grasos/análisis , Prueba de Complementación Genética , Ingeniería Genética/métodos , Filogenia , Triglicéridos/análisis
19.
Genome Res ; 21(6): 885-97, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21543515

RESUMEN

The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi.


Asunto(s)
Aspergillus niger/genética , Biología Computacional/métodos , Evolución Molecular , Variación Genética , Genoma Fúngico/genética , Filogenia , Secuencia de Bases , Perfilación de la Expresión Génica , Reordenamiento Génico/genética , Transferencia de Gen Horizontal/genética , Genómica/métodos , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Sintenía/genética
20.
Fungal Genet Biol ; 72: 207-215, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25117693

RESUMEN

Protein glycosylation, an important and complex post-translational modification (PTM), is involved in various biological processes, including the receptor-ligand and cell-cell interaction, and plays a crucial role in many biological functions. However, little is known about the glycan structures of important biological complex samples, and the conventional glycan enrichment strategy (i.e., size-exclusion column [SEC] separation) prior to nuclear magnetic resonance (NMR) detection is time-consuming and tedious. In this study, we developed a glycan enrichment strategy that couples Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) with dialysis to enrich the glycans from the pronase E digests of RNase B, followed by NMR analysis of the glycoconjugate. Our results suggest that the ZIC-HILIC enrichment coupled with dialysis is a simple, fast, and efficient sample preparation approach. The approach was thus applied to analysis of a biological complex sample, the pronase E digest of the secreted proteins from the fungus Aspergillus niger. The NMR spectra revealed that the secreted proteins from A. niger contain both N-linked glycans with a high-mannose core similar to the structure of the glycan from RNase B, and O-linked glycans bearing mannose and glucose with 1→3 and 1→6 linkages. In all, our study provides compelling evidence that ZIC-HILIC separation coupled with dialysis is very effective and accessible in preparing glycans for the downstream NMR analysis, which could greatly facilitate the future NMR-based glycoproteomics research.


Asunto(s)
Aspergillus niger/química , Cromatografía Liquida/métodos , Diálisis/métodos , Proteínas Fúngicas/química , Espectroscopía de Resonancia Magnética/métodos , Polisacáridos/análisis , Polisacáridos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA