Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pediatr Res ; 91(6): 1374-1382, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33947997

RESUMEN

BACKGROUND: Cerebral autoregulation mechanisms help maintain adequate cerebral blood flow (CBF) despite changes in cerebral perfusion pressure. Impairment of cerebral autoregulation, during and after cardiopulmonary bypass (CPB), may increase risk of neurologic injury in neonates undergoing surgery. In this study, alterations of cerebral autoregulation were assessed in a neonatal swine model probing four perfusion strategies. METHODS: Neonatal swine (n = 25) were randomized to continuous deep hypothermic cardiopulmonary bypass (DH-CPB, n = 7), deep hypothermic circulatory arrest (DHCA, n = 7), selective cerebral perfusion (SCP, n = 7) at deep hypothermia, or normothermic cardiopulmonary bypass (control, n = 4). The correlation coefficient (LDx) between laser Doppler measurements of CBF and mean arterial blood pressure was computed at initiation and conclusion of CPB. Alterations in cerebral autoregulation were assessed by the change between initial and final LDx measurements. RESULTS: Cerebral autoregulation became more impaired (LDx increased) in piglets that underwent DH-CPB (initial LDx: median 0.15, IQR [0.03, 0.26]; final: 0.45, [0.27, 0.74]; p = 0.02). LDx was not altered in those undergoing DHCA (p > 0.99) or SCP (p = 0.13). These differences were not explained by other risk factors. CONCLUSIONS: In a validated swine model of cardiac surgery, DH-CPB had a significant effect on cerebral autoregulation, whereas DHCA and SCP did not. IMPACT: Approximately half of the patients who survive neonatal heart surgery with cardiopulmonary bypass (CPB) experience neurodevelopmental delays. This preclinical investigation takes steps to elucidate and isolate potential perioperative risk factors of neurologic injury, such as impairment of cerebral autoregulation, associated with cardiac surgical procedures involving CPB. We demonstrate a method to characterize cerebral autoregulation during CPB pump flow changes in a neonatal swine model of cardiac surgery. Cerebral autoregulation was not altered in piglets that underwent deep hypothermic circulatory arrest (DHCA) or selective cerebral perfusion (SCP), but it was altered in piglets that underwent deep hypothermic CBP.


Asunto(s)
Puente Cardiopulmonar , Hipotermia Inducida , Animales , Animales Recién Nacidos , Puente Cardiopulmonar/efectos adversos , Circulación Cerebrovascular , Homeostasis , Porcinos
2.
J Pediatr ; 236: 54-61.e1, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34004191

RESUMEN

OBJECTIVE: To demonstrate that a novel noninvasive index of intracranial pressure (ICP) derived from diffuse optics-based techniques is associated with intracranial hypertension. STUDY DESIGN: We compared noninvasive and invasive ICP measurements in infants with hydrocephalus. Infants born term and preterm were eligible for inclusion if clinically determined to require cerebrospinal fluid (CSF) diversion. Ventricular size was assessed preoperatively via ultrasound measurement of the fronto-occipital (FOR) and frontotemporal (FTHR) horn ratios. Invasive ICP was obtained at the time of surgical intervention with a manometer. Intracranial hypertension was defined as invasive ICP ≥15 mmHg. Diffuse optical measurements of cerebral perfusion, oxygen extraction, and noninvasive ICP were performed preoperatively, intraoperatively, and postoperatively. Optical and ultrasound measures were compared with invasive ICP measurements, and their change in values after CSF diversion were obtained. RESULTS: We included 39 infants, 23 with intracranial hypertension. No group difference in ventricular size was found by FOR (P = .93) or FTHR (P = .76). Infants with intracranial hypertension had significantly higher noninvasive ICP (P = .02) and oxygen extraction fraction (OEF) (P = .01) compared with infants without intracranial hypertension. Increased cerebral blood flow (P = .005) and improved OEF (P < .001) after CSF diversion were observed only in infants with intracranial hypertension. CONCLUSIONS: Noninvasive diffuse optical measures (including a noninvasive ICP index) were associated with intracranial hypertension. The findings suggest that impaired perfusion from intracranial hypertension was independent of ventricular size. Hemodynamic evidence of the benefits of CSF diversion was seen in infants with intracranial hypertension. Noninvasive optical techniques hold promise for aiding the assessment of CSF diversion timing.


Asunto(s)
Circulación Cerebrovascular/fisiología , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/fisiopatología , Hipertensión Intracraneal/diagnóstico , Derivaciones del Líquido Cefalorraquídeo , Estudios de Factibilidad , Femenino , Humanos , Hidrocefalia/cirugía , Recién Nacido , Hipertensión Intracraneal/etiología , Hipertensión Intracraneal/fisiopatología , Presión Intracraneal/fisiología , Masculino , Imagen Óptica , Proyectos Piloto , Reproducibilidad de los Resultados , Análisis Espectral
3.
Pediatr Res ; 88(6): 925-933, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32172282

RESUMEN

BACKGROUND: Extra-corporeal membrane oxygenation (ECMO) is a life-saving intervention for severe respiratory and cardiac diseases. However, 50% of survivors have abnormal neurologic exams. Current ECMO management is guided by systemic metrics, which may poorly predict cerebral perfusion. Continuous optical monitoring of cerebral hemodynamics during ECMO holds potential to detect risk factors of brain injury such as impaired cerebrovascular autoregulation (CA). METHODS: We conducted daily measurements of microvascular cerebral blood flow (CBF), oxygen saturation, and total hemoglobin concentration using diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy in nine neonates. We characterize CA utilizing the correlation coefficient (DCSx) between CBF and mean arterial blood pressure (MAP) during ECMO pump flow changes. RESULTS: Average MAP and pump flow levels were weakly correlated with CBF and were not correlated with cerebral oxygen saturation. CA integrity varied between individuals and with time. Systemic measurements of MAP, pulse pressure, and left cardiac dysfunction were not predictive of impaired CA. CONCLUSIONS: Our pilot results suggest that systemic measures alone cannot distinguish impaired CA from intact CA during ECMO. Furthermore, optical neuromonitoring could help determine patient-specific ECMO pump flows for optimal CA integrity, thereby reducing risk of secondary brain injury. IMPACT: Cerebral blood flow and oxygenation are not well predicted by systemic proxies such as ECMO pump flow or blood pressure. Continuous, quantitative, bedside monitoring of cerebral blood flow and oxygenation with optical tools enables new insight into the adequacy of cerebral perfusion during ECMO. A demonstration of hybrid diffuse optical and correlation spectroscopies to continuously measure cerebral blood oxygen saturation and flow in patients on ECMO, enabling assessment of cerebral autoregulation. An observation of poor correlation of cerebral blood flow and oxygenation with systemic mean arterial pressure and ECMO pump flow, suggesting that clinical decision making guided by target values for these surrogates may not be neuroprotective. ~50% of ECMO survivors have long-term neurological deficiencies; continuous monitoring of brain health throughout therapy may reduce these tragically common sequelae through brain-focused adjustment of ECMO parameters.


Asunto(s)
Encéfalo/fisiopatología , Circulación Cerebrovascular , Oxigenación por Membrana Extracorpórea/métodos , Hemodinámica , Microcirculación , Oxígeno/metabolismo , Presión Sanguínea , Lesiones Encefálicas/fisiopatología , Homeostasis/fisiología , Humanos , Proyectos Piloto , Reproducibilidad de los Resultados , Riesgo , Factores de Riesgo , Dispersión de Radiación , Espectrofotometría , Espectroscopía Infrarroja Corta/métodos , Resultado del Tratamiento
4.
Neurocrit Care ; 30(1): 72-80, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30030667

RESUMEN

BACKGROUND: Diffuse correlation spectroscopy (DCS) noninvasively permits continuous, quantitative, bedside measurements of cerebral blood flow (CBF). To test whether optical monitoring (OM) can detect decrements in CBF producing cerebral hypoxia, we applied the OM technique continuously to probe brain-injured patients who also had invasive brain tissue oxygen (PbO2) monitors. METHODS: Comatose patients with a Glasgow Coma Score (GCS) < 8) were enrolled in an IRB-approved protocol after obtaining informed consent from the legally authorized representative. Patients underwent 6-8 h of daily monitoring. Brain PbO2 was measured with a Clark electrode. Absolute CBF was monitored with DCS, calibrated by perfusion measurements based on intravenous indocyanine green bolus administration. Variation of optical CBF and mean arterial pressure (MAP) from baseline was measured during periods of brain hypoxia (defined as a drop in PbO2 below 19 mmHg for more than 6 min from baseline (PbO2 > 21 mmHg). In a secondary analysis, we compared optical CBF and MAP during randomly selected 12-min periods of "normal" (> 21 mmHg) and "low" (< 19 mmHg) PbO2. Receiver operator characteristic (ROC) and logistic regression analysis were employed to assess the utility of optical CBF, MAP, and the two-variable combination, for discrimination of brain hypoxia from normal brain oxygen tension. RESULTS: Seven patients were enrolled and monitored for a total of 17 days. Baseline-normalized MAP and CBF significantly decreased during brain hypoxia events (p < 0.05). Through use of randomly selected, temporally sparse windows of low and high PbO2, we observed that both MAP and optical CBF discriminated between periods of brain hypoxia and normal brain oxygen tension (ROC AUC 0.761, 0.762, respectively). Further, combining these variables using logistic regression analysis markedly improved the ability to distinguish low- and high-PbO2 epochs (AUC 0.876). CONCLUSIONS: The data suggest optical techniques may be able to provide continuous individualized CBF measurement to indicate occurrence of brain hypoxia and guide brain-directed therapy.


Asunto(s)
Presión Arterial/fisiología , Circulación Cerebrovascular/fisiología , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Hipoxia-Isquemia Encefálica/fisiopatología , Monitorización Neurofisiológica/métodos , Adulto , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/fisiopatología , Coma/diagnóstico por imagen , Coma/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen/métodos , Neuroimagen/normas , Monitorización Neurofisiológica/normas , Imagen Óptica/métodos , Imagen Óptica/normas , Espectroscopía Infrarroja Corta/métodos , Espectroscopía Infrarroja Corta/normas
5.
J Stroke Cerebrovasc Dis ; 28(11): 104294, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31416759

RESUMEN

GOALS: We quantified cerebral blood flow response to a 500 cc bolus of 0.9%% normal saline (NS) within 96 hours of acute ischemic stroke (AIS) using diffuse correlation spectroscopy (DCS). MATERIALS AND METHODS: Subjects with AIS in the anterior, middle, or posterior cerebral artery territory were enrolled within 96 hours of symptom onset. DCS measured relative cerebral blood flow (rCBF) in the bilateral frontal lobes for 15 minutes at rest (baseline), during a 30-minute infusion of 500 cc NS (bolus), and for 15 minutes after completion (post-bolus). Mean rCBF for each time period was calculated for individual subjects and median rCBF for the population was compared between time periods. Linear regression was used to evaluate for associations between rCBF and clinical features. RESULTS: Among 57 subjects, median rCBF (IQR) increased relative to baseline in the ipsilesional hemisphere by 17% (-2.0%, 43.1%), P< 0.001, and in the contralesional hemisphere by 13.3% (-4.3%, 36.0%), P < .004. No significant associations were found between ipsilesional changes in rCBF and age, race, infarct size, infarct location, presence of large vessel stenosis, NIH stroke scale, or symptom duration. CONCLUSION: A 500 cc bolus of .9% NS produced a measurable increase in rCBF in both the affected and nonaffected hemispheres. Clinical features did not predict rCBF response.


Asunto(s)
Isquemia Encefálica/terapia , Circulación Cerebrovascular , Fluidoterapia , Solución Salina/administración & dosificación , Accidente Cerebrovascular/terapia , Anciano , Velocidad del Flujo Sanguíneo , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/fisiopatología , Femenino , Humanos , Infusiones Intravenosas , Masculino , Persona de Mediana Edad , Proyectos Piloto , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/fisiopatología , Factores de Tiempo , Resultado del Tratamiento
6.
J Stroke Cerebrovasc Dis ; 28(6): 1483-1494, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30975462

RESUMEN

INTRODUCTION: Mechanical thrombectomy is revolutionizing treatment of acute stroke due to large vessel occlusion (LVO). Unfortunately, use of the modified Thrombolysis in Cerebral Infarction score (mTICI) to characterize recanalization of the cerebral vasculature does not address microvascular perfusion of the distal parenchyma, nor provide more than a vascular "snapshot." Thus, little is known about tissue-level hemodynamic consequences of LVO recanalization. Diffuse correlation spectroscopy (DCS) and diffuse optical spectroscopy (DOS) are promising methods for continuous, noninvasive, contrast-free transcranial monitoring of cerebral microvasculature. METHODS: Here, we use a combined DCS/DOS system to monitor frontal lobe hemodynamic changes during endovascular treatment of 2 patients with ischemic stroke due to internal carotid artery (ICA) occlusions. RESULTS AND DISCUSSION: The monitoring instrument identified a recanalization-induced increase in ipsilateral cerebral blood flow (CBF) with little or no concurrent change in contralateral CBF and extracerebral blood flow. The results suggest that diffuse optical monitoring is sensitive to intracerebral hemodynamics in patients with ICA occlusion and can measure microvascular responses to mechanical thrombectomy.


Asunto(s)
Isquemia Encefálica/terapia , Circulación Cerebrovascular , Lóbulo Frontal/irrigación sanguínea , Hemodinámica , Microcirculación , Imagen Óptica/métodos , Imagen de Perfusión/métodos , Accidente Cerebrovascular/terapia , Trombectomía/métodos , Anciano , Anciano de 80 o más Años , Velocidad del Flujo Sanguíneo , Isquemia Encefálica/diagnóstico por imagen , Isquemia Encefálica/fisiopatología , Femenino , Humanos , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Análisis Espectral , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/fisiopatología , Factores de Tiempo , Resultado del Tratamiento
7.
Neurophotonics ; 11(1): 015008, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38464864

RESUMEN

Significance: Bedside cerebral blood flow (CBF) monitoring has the potential to inform and improve care for acute neurologic diseases, but technical challenges limit the use of existing techniques in clinical practice. Aim: Here, we validate the Openwater optical system, a novel wearable headset that uses laser speckle contrast to monitor microvascular hemodynamics. Approach: We monitored 25 healthy adults with the Openwater system and concurrent transcranial Doppler (TCD) while performing a breath-hold maneuver to increase CBF. Relative blood flow (rBF) was derived from changes in speckle contrast, and relative blood volume (rBV) was derived from changes in speckle average intensity. Results: A strong correlation was observed between beat-to-beat optical rBF and TCD-measured cerebral blood flow velocity (CBFv), R=0.79; the slope of the linear fit indicates good agreement, 0.87 (95% CI: 0.83 -0.92). Beat-to-beat rBV and CBFv were also strongly correlated, R=0.72, but as expected the two variables were not proportional; changes in rBV were smaller than CBFv changes, with linear fit slope of 0.18 (95% CI: 0.17 to 0.19). Further, strong agreement was found between rBF and CBFv waveform morphology and related metrics. Conclusions: This first in vivo validation of the Openwater optical system highlights its potential as a cerebral hemodynamic monitor, but additional validation is needed in disease states.

8.
J Med Toxicol ; 20(1): 39-48, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37847352

RESUMEN

INTRODUCTION: Carbon monoxide (CO) is a colorless and odorless gas that is a leading cause of environmental poisoning in the USA with substantial mortality and morbidity. The mechanism of CO poisoning is complex and includes hypoxia, inflammation, and leukocyte sequestration in brain microvessel segments leading to increased reactive oxygen species. Another important pathway is the effects of CO on the mitochondria, specifically at cytochrome c oxidase, also known as Complex IV (CIV). One of the glaring gaps is the lack of rigorous experimental models that may recapitulate survivors of acute CO poisoning in the early phase. The primary objective of this preliminary study is to use our advanced swine platform of acute CO poisoning to develop a clinically relevant survivor model to perform behavioral assessment and MRI imaging that will allow future development of biomarkers and therapeutics. METHODS: Four swine (10 kg) were divided into two groups: control (n = 2) and CO (n = 2). The CO group received CO at 2000 ppm for over 120 min followed by 30 min of re-oxygenation at room air for one swine and 150 min followed by 30 min of re-oxygenation for another swine. The two swine in the sham group received room air for 150 min. Cerebral microdialysis was performed to obtain semi real-time measurements of cerebral metabolic status. Following exposures, all surviving animals were observed for a 24-h period with neurobehavioral assessment and imaging. At the end of the 24-h period, fresh brain tissue (cortical and hippocampal) was immediately harvested to measure mitochondrial respiration. RESULTS: While a preliminary ongoing study, animals in the CO group showed alterations in cerebral metabolism and cellular function in the acute exposure phase with possible sustained mitochondrial changes 24 h after the CO exposure ended. CONCLUSIONS: This preliminary research further establishes a large animal swine model investigating survivors of CO poisoning to measure translational metrics relevant to clinical medicine that includes a basic neurobehavioral assessment and post exposure cellular measures.


Asunto(s)
Intoxicación por Monóxido de Carbono , Animales , Porcinos , Intoxicación por Monóxido de Carbono/terapia , Mitocondrias/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Imagen por Resonancia Magnética , Monóxido de Carbono/toxicidad , Monóxido de Carbono/metabolismo
9.
PLoS One ; 19(5): e0302653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748750

RESUMEN

Out-of-hospital cardiac arrest (OHCA) affects over 360,000 adults in the United States each year with a 50-80% mortality prior to reaching medical care. Despite aggressive supportive care and targeted temperature management (TTM), half of adults do not live to hospital discharge and nearly one-third of survivors have significant neurologic injury. The current treatment approach following cardiac arrest resuscitation consists primarily of supportive care and possible TTM. While these current treatments are commonly used, mortality remains high, and survivors often develop lasting neurologic and cardiac sequela well after resuscitation. Hence, there is a critical need for further therapeutic development of adjunctive therapies. While select therapeutics have been experimentally investigated, one promising agent that has shown benefit is CO. While CO has traditionally been thought of as a cellular poison, there is both experimental and clinical evidence that demonstrate benefit and safety in ischemia with lower doses related to improved cardiac/neurologic outcomes. While CO is well known for its poisonous effects, CO is a generated physiologically in cells through the breakdown of heme oxygenase (HO) enzymes and has potent antioxidant and anti-inflammatory activities. While CO has been studied in myocardial infarction itself, the role of CO in cardiac arrest and post-arrest care as a therapeutic is less defined. Currently, the standard of care for post-arrest patients consists primarily of supportive care and TTM. Despite current standard of care, the neurological prognosis following cardiac arrest and return of spontaneous circulation (ROSC) remains poor with patients often left with severe disability due to brain injury primarily affecting the cortex and hippocampus. Thus, investigations of novel therapies to mitigate post-arrest injury are clearly warranted. The primary objective of this proposed study is to combine our expertise in swine models of CO and cardiac arrest for future investigations on the cellular protective effects of low dose CO. We will combine our innovative multi-modal diagnostic platform to assess cerebral metabolism and changes in mitochondrial function in swine that undergo cardiac arrest with therapeutic application of CO.


Asunto(s)
Monóxido de Carbono , Modelos Animales de Enfermedad , Animales , Porcinos , Monóxido de Carbono/farmacología , Monóxido de Carbono/metabolismo , Paro Cardíaco/terapia , Paro Cardíaco Extrahospitalario/terapia , Masculino , Reanimación Cardiopulmonar/métodos
10.
medRxiv ; 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37873126

RESUMEN

Bedside cerebral blood flow (CBF) monitoring has the potential to inform and improve care for acute neurologic diseases, but technical challenges limit the use of existing techniques in clinical practice. Here we validate the Openwater optical system, a novel wearable headset that uses laser speckle contrast to monitor microvascular hemodynamics. We monitored 25 healthy adults with the Openwater system and concurrent transcranial Doppler (TCD) while performing a breath-hold maneuver to increase CBF. Relative blood flow (rBF) was derived from the changes in speckle contrast, and relative blood volume (rBV) was derived from the changes in speckle average intensity. A strong correlation was observed between beat-to-beat optical rBF and TCD-measured cerebral blood flow velocity (CBFv), R=0.79; the slope of the linear fit indicates good agreement, 0.87 (95% CI:0.83-0.92). Beat-to-beat rBV and CBFv were strongly correlated, R=0.72, but as expected the two variables were not proportional; changes in rBV were smaller than CBFv changes, with linear fit slope of 0.18 (95% CI:0.17-0.19). Further, strong agreement was found between rBF and CBFv waveform morphology and related metrics. This first in vivo validation of the Openwater optical system highlights its potential as a cerebral hemodynamic monitor, but additional validation is needed in disease states.

11.
Front Pediatr ; 11: 1125985, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37425272

RESUMEN

Background: Surgical procedures involving the aortic arch present unique challenges to maintaining cerebral perfusion, and optimal neuroprotective strategies to prevent neurological injury during such high-risk procedures are not completely understood. The use of antegrade cerebral perfusion (ACP) has gained favor as a neuroprotective strategy over deep hypothermic circulatory arrest (DHCA) due to the ability to selectively perfuse the brain. Despite this theoretical advantage over DHCA, there has not been conclusive evidence that ACP is superior to DHCA. One potential reason for this is the incomplete understanding of ideal ACP flow rates to prevent both ischemia from underflowing and hyperemia and cerebral edema from overflowing. Critically, there are no continuous, noninvasive measurements of cerebral blood flow (CBF) and cerebral oxygenation (StO2) to guide ACP flow rates and help develop standard clinical practices. The purpose of this study is to demonstrate the feasibility of using noninvasive, diffuse optical spectroscopy measurements of CBF and cerebral oxygenation during the conduct of ACP in human neonates undergoing the Norwood procedure. Methods: Four neonates prenatally diagnosed with hypoplastic left heart syndrome (HLHS) or a similar variant underwent the Norwood procedure with continuous intraoperative monitoring of CBF and cerebral oxygen saturation (StO2) using two non-invasive optical techniques, namely diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy (FD-DOS). Changes in CBF and StO2 due to ACP were calculated by comparing these parameters during a stable 5 min period of ACP to the last 5 min of full-body CPB immediately prior to ACP initiation. Flow rates for ACP were left to the discretion of the surgeon and ranged from 30 to 50 ml/kg/min, and all subjects were cooled to 18°C prior to initiation of ACP. Results: During ACP, the continuous optical monitoring demonstrated a median (IQR) percent change in CBF of -43.4% (38.6) and a median (IQR) absolute change in StO2 of -3.6% (12.3) compared to a baseline period during full-body cardiopulmonary bypass (CPB). The four subjects demonstrated varying responses in StO2 due to ACP. ACP flow rates of 30 and 40 ml/kg/min (n = 3) were associated with decreased CBF during ACP compared to full-body CPB. Conversely, one subject with a higher flow6Di rate of 50 ml/kg/min demonstrated increased CBF and StO2 during ACP. Conclusions: This feasibility study demonstrates that novel diffuse optical technologies can be utilized for improved neuromonitoring in neonates undergoing cardiac surgery where ACP is utilized. Future studies are needed to correlate these findings with neurological outcomes to inform best practices during ACP in these high-risk neonates.

12.
JTCVS Open ; 16: 801-809, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38204663

RESUMEN

Objectives: Recent research suggests that increased cerebral oxygen use during surgical intervention for neonates with congenital heart disease may play a role in the development of postoperative white matter injury. The objective of this study is to determine whether increased cerebral electrical activity correlates with greater decrease of cerebral oxygen saturation during deep hypothermic circulatory arrest. Methods: Neonates with critical congenital heart disease requiring surgical intervention during the first week of life were studied. All subjects had continuous neuromonitoring with electroencephalography and an optical probe (to quantify cerebral oxygen saturation) during cardiac surgical repair that involved the use of cardiopulmonary bypass and deep hypothermic circulatory arrest. A simple linear regression was used to investigate the association between electroencephalography metrics before the deep hypothermic circulatory arrest period and the change in cerebral oxygen saturation during the deep hypothermic circulatory arrest period. Results: Sixteen neonates had both neuromonitoring modalities attached during surgical repair. Cerebral oxygen saturation data from 5 subjects were excluded due to poor data quality, yielding a total sample of 11 neonates. A simple linear regression model found that the presence of electroencephalography activity at the end of cooling is positively associated with the decrease in cerebral oxygen saturation that occurs during deep hypothermic circulatory arrest (P < .05). Conclusions: Electroencephalography characteristics within 5 minutes before the initiation of deep hypothermic circulatory arrest may be useful in predicting the decrease in cerebral oxygen saturation that occurs during deep hypothermic circulatory arrest. Electroencephalography may be an important tool for guiding cooling and the initiation of circulatory arrest to potentially decrease the prevalence of new white matter injury in neonates with critical congenital heart disease.

13.
medRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38105980

RESUMEN

Background: Infants with complex congenital heart disease (CHD) require life-saving corrective/palliative heart surgery in the first weeks of life. These infants are at risk for brain injury and poor neurodevelopmental outcomes. Cerebral microhemorrhages (CMH) are frequently seen after neonatal bypass heart surgery, but it remains unknown if CMH are a benign finding or constitute injury. Herein, we investigate the risk factors for developing CMH and their clinical significance. Methods: 192 infants with CHD undergoing corrective cardiac surgery with cardiopulmonary bypass (CPB) at a single institution were prospectively evaluated with pre-(n = 183) and/or postoperative (n = 162) brain magnetic resonance imaging (MRI). CMH severity was scored based on total number of microhemorrhages. Antenatal, perioperative, and postoperative candidate risk factors for CMH and neurodevelopmental (ND) outcomes were analyzed. Eighteen-month neurodevelopmental outcomes were assessed using the Bayley-III Scales of Infants and Toddler Development in a subset of patients (n = 82). Linear regression was used to analyze associations between risk factors or ND outcomes and presence/number of CMH. Results: The most common CHD subtypes were hypoplastic left heart syndrome (HLHS) (37%) and transposition of the great arteries (TGA) (33%). Forty-two infants (23%) had CMH present on MRI before surgery and 137 infants (85%) post-surgery. No parameters evaluated were significant risk factors for preoperative CMH. In multivariate analysis, cardiopulmonary bypass (CPB) duration (p < 0.0001), use of extracorporeal membrane oxygenation (ECMO) support (p < 0.0005), postoperative seizure(s) (p < 0.03), and lower birth weight (p < 0.03) were associated with new or worsened CMH postoperatively. Higher CMH number was associated with lower scores on motor (p < 0.03) testing at 18 months. Conclusion: CMH is a common imaging finding in infants with CHD with increased prevalence and severity after CPB and adverse impact on neurodevelopmental outcomes starting at a young age. Longer duration of CPB and need for postoperative ECMO were the most significant risk factors for developing CMH. However, presence of CMH on preoperative scans indicates non-surgical risk factors that are yet to be identified. Neuroprotective strategies to mitigate risk factors for CMH may improve neurodevelopmental outcomes in this vulnerable population.

14.
IEEE J Biomed Health Inform ; 27(10): 4719-4727, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37478027

RESUMEN

Monitoring physiological waveforms, specifically hemodynamic variables (e.g., blood pressure waveforms) and end-tidal CO2 (EtCO2), during pediatric cardiopulmonary resuscitation (CPR) has been demonstrated to improve survival rates and outcomes when compared to standard depth-guided CPR. However, waveform guidance has largely been based on thresholds for single parameters and therefore does not leverage all the information contained in multimodal data. We hypothesize that the combination of multimodal physiological features improves the prediction of the return of spontaneous circulation (ROSC), the clinical indicator of short-term CPR success. We used machine learning algorithms to evaluate features extracted from eight low-resolution (4 samples per minute) physiological waveforms to predict ROSC. The waveforms were acquired from the 2nd to 10th minute of CPR in pediatric swine models of cardiac arrest (N = 89, 8-12 kg). The waveforms were divided into segments with increasing length (both forward and backward) for feature extraction, and machine learning algorithms were trained for ROSC prediction. For the full CPR period (2nd to 10th minute), the area under the receiver operating characteristics curve (AUC) was 0.93 (95% CI: 0.87-0.99) for the multivariate model, 0.70 (0.55-0.85) for EtCO2 and 0.80 (0.67-0.93) for coronary perfusion pressure. The best prediction performances were achieved when the period from the 6th to the 10th minute was included. Poor predictions were observed for some individual waveforms, e.g., right atrial pressure. In conclusion, multimodal waveform features carry relevant information for ROSC prediction. Using multimodal waveform features in CPR guidance has the potential to improve resuscitation success and reduce mortality.


Asunto(s)
Reanimación Cardiopulmonar , Paro Cardíaco , Humanos , Animales , Porcinos , Niño , Retorno de la Circulación Espontánea , Paro Cardíaco/terapia , Hemodinámica , Presión Sanguínea
15.
J Neurointerv Surg ; 2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898551

RESUMEN

BACKGROUND: Endovascular therapy (EVT) has revolutionized the treatment of acute stroke, but large vessel recanalization does not always result in tissue-level reperfusion. Cerebral blood flow (CBF) is not routinely monitored during EVT. We aimed to leverage diffuse correlation spectroscopy (DCS), a novel transcranial optical imaging technique, to assess the relationship between microvascular CBF and post-EVT outcomes. METHODS: Frontal lobe CBF was monitored by DCS in 40 patients undergoing EVT. Baseline CBF deficit was calculated as the percentage of CBF impairment on pre-EVT CT perfusion. Microvascular reperfusion was calculated as the percentage increase in DCS-derived CBF that occurred with recanalization. The adequacy of reperfusion was defined by persistent CBF deficit, calculated as: baseline CBF deficit - microvascular reperfusion. A good functional outcome was defined as 90-day modified Rankin Scale score ≤2. RESULTS: Thirty-six of 40 patients achieved successful recanalization, in whom microvascular reperfusion in itself was not associated with infarct volume or functional outcome. However, patients with good functional outcomes had a smaller persistent CBF deficit (median 1% (IQR -11%-16%)) than patients with poor outcomes (median 28% (IQR 2-50%)) (p=0.02). Smaller persistent CBF deficit was also associated with smaller infarct volume (p=0.004). Multivariate models confirmed that persistent CBF deficit was independently associated with infarct volume and functional outcome. CONCLUSIONS: CBF augmentation alone does not predict post-EVT outcomes, but when microvascular reperfusion closely matches the baseline CBF deficit, patients experience favorable clinical and radiographic outcomes. By recognizing inadequate reperfusion, bedside CBF monitoring may provide opportunities to personalize post-EVT care aimed at CBF optimization.

16.
Biomed Opt Express ; 14(6): 2432-2448, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37342705

RESUMEN

In this study, we used diffuse optics to address the need for non-invasive, continuous monitoring of cerebral physiology following traumatic brain injury (TBI). We combined frequency-domain and broadband diffuse optical spectroscopy with diffuse correlation spectroscopy to monitor cerebral oxygen metabolism, cerebral blood volume, and cerebral water content in an established adult swine-model of impact TBI. Cerebral physiology was monitored before and after TBI (up to 14 days post injury). Overall, our results suggest that non-invasive optical monitoring can assess cerebral physiologic impairments post-TBI, including an initial reduction in oxygen metabolism, development of cerebral hemorrhage/hematoma, and brain swelling.

17.
Metabolites ; 13(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37999249

RESUMEN

Cardiopulmonary bypass (CPB) provides cerebral oxygenation and blood flow (CBF) during neonatal congenital heart surgery, but the impacts of CPB on brain oxygen supply and metabolic demands are generally unknown. To elucidate this physiology, we used diffuse correlation spectroscopy and frequency-domain diffuse optical spectroscopy to continuously measure CBF, oxygen extraction fraction (OEF), and oxygen metabolism (CMRO2) in 27 neonatal swine before, during, and up to 24 h after CPB. Concurrently, we sampled cerebral microdialysis biomarkers of metabolic distress (lactate-pyruvate ratio) and injury (glycerol). We applied a novel theoretical approach to correct for hematocrit variation during optical quantification of CBF in vivo. Without correction, a mean (95% CI) +53% (42, 63) increase in hematocrit resulted in a physiologically improbable +58% (27, 90) increase in CMRO2 relative to baseline at CPB initiation; following correction, CMRO2 did not differ from baseline at this timepoint. After CPB initiation, OEF increased but CBF and CMRO2 decreased with CPB time; these temporal trends persisted for 0-8 h following CPB and coincided with a 48% (7, 90) elevation of glycerol. The temporal trends and glycerol elevation resolved by 8-24 h. The hematocrit correction improved quantification of cerebral physiologic trends that precede and coincide with neurological injury following CPB.

18.
bioRxiv ; 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37503137

RESUMEN

Background: Pediatric neurological injury and disease is a critical public health issue due to increasing rates of survival from primary injuries (e.g., cardiac arrest, traumatic brain injury) and a lack of monitoring technologies and therapeutics for the treatment of secondary neurological injury. Translational, preclinical research facilitates the development of solutions to address this growing issue but is hindered by a lack of available data frameworks and standards for the management, processing, and analysis of multimodal data sets. Methods: Here, we present a generalizable data framework that was implemented for large animal research at the Children's Hospital of Philadelphia to address this technological gap. The presented framework culminates in an interactive dashboard for exploratory analysis and filtered data set download. Results: Compared with existing clinical and preclinical data management solutions, the presented framework accommodates heterogeneous data types (single measure, repeated measures, time series, and imaging), integrates data sets across various experimental models, and facilitates dynamic visualization of integrated data sets. We present a use case of this framework for predictive model development for intra-arrest prediction of cardiopulmonary resuscitation outcome. Conclusions: The described preclinical data framework may serve as a template to aid in data management efforts in other translational research labs that generate heterogeneous data sets and require a dynamic platform that can easily evolve alongside their research.

19.
Nat Biomed Eng ; 6(9): 1017-1030, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35970929

RESUMEN

Direct assessment of blood oxygenation in the human placenta can provide information about placental function. However, the monitoring of placental oxygenation involves invasive sampling or imaging techniques that are poorly suited for bedside use. Here we show that placental oxygen haemodynamics can be non-invasively probed in real time and up to 4.2 cm below the body surface via concurrent frequency-domain diffuse optical spectroscopy and ultrasound imaging. We developed a multimodal instrument to facilitate the assessment of the properties of the anterior placenta by leveraging image-reconstruction algorithms that integrate ultrasound information about the morphology of tissue layers with optical information on haemodynamics. In a pilot investigation involving placentas with normal function (15 women) or abnormal function (9 women) from pregnancies in the third trimester, we found no significant differences in baseline haemoglobin properties, but statistically significant differences in the haemodynamic responses to maternal hyperoxia. Our findings suggest that the non-invasive monitoring of placental oxygenation may aid the early detection of placenta-related adverse pregnancy outcomes and maternal vascular malperfusion.


Asunto(s)
Hiperoxia , Placenta , Femenino , Humanos , Hiperoxia/diagnóstico por imagen , Oxígeno , Placenta/irrigación sanguínea , Placenta/diagnóstico por imagen , Placenta/fisiología , Embarazo , Análisis Espectral , Ultrasonografía
20.
Neurophotonics ; 9(3): 035004, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36039170

RESUMEN

Significance: The critical closing pressure (CrCP) of cerebral circulation, as measured by diffuse correlation spectroscopy (DCS), is a promising biomarker of intracranial hypertension. However, CrCP techniques using DCS have not been assessed in gold standard experiments. Aim: CrCP is typically calculated by examining the variation of cerebral blood flow (CBF) during the cardiac cycle (with normal sinus rhythm). We compare this typical CrCP measurement with a gold standard obtained during the drops in arterial blood pressure (ABP) caused by rapid ventricular pacing (RVP) in patients undergoing invasive electrophysiologic procedures. Approach: Adults receiving electrophysiology procedures with planned ablation were enrolled for DCS CBF monitoring. CrCP was calculated from CBF and ABP data by three methods: (1) linear extrapolation of data during RVP ( CrCP RVP ; the gold standard); (2) linear extrapolation of data during regular heartbeats ( CrCP Linear ); and (3) fundamental harmonic Fourier filtering of data during regular heartbeats ( CrCP Fourier ). Results: CBF monitoring was performed prior to and during 55 episodes of RVP in five adults. CrCP RVP and CrCP Fourier demonstrated agreement ( R = 0.66 , slope = 1.05 (95%CI, 0.72 to 1.38). Agreement between CrCP RVP and CrCP Linear was worse; CrCP Linear was 8.2 ± 5.9 mmHg higher than CrCP RVP (mean ± SD; p < 0.001 ). Conclusions: Our results suggest that DCS-measured CrCP can be accurately acquired during normal sinus rhythm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA