Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36361553

RESUMEN

Mutations in the apical Na-K-2Cl co-transporter, NKCC2, cause type I Bartter syndrome (BS1), a life-threatening kidney disease. We have previously demonstrated that the BS1 variant Y998X, which deprives NKCC2 from its highly conserved dileucine-like motifs, compromises co-transporter surface delivery through ER retention mechanisms. However, whether these hydrophobic motifs are sufficient for anterograde trafficking of NKCC2 remains to be determined. Interestingly, sequence analysis of NKCC2 C-terminus revealed the presence of consensus di-acidic (D/E-X-D/E) motifs, 949EEE951 and 1019DAELE1023, located upstream and downstream of BS1 mutation Y998X, respectively. Di-acidic codes are involved in ER export of proteins through interaction with COPII budding machinery. Importantly, whereas mutating 949EEE951 motif to 949AEA951 had no effect on NKCC2 processing, mutating 1019DAE1021 to 1019AAA1021 heavily impaired complex-glycosylation and cell surface expression of the cotransporter in HEK293 and OKP cells. Most importantly, triple mutation of D, E and E residues of 1019DAELE1023 to 1019AAALA1023 almost completely abolished NKCC2 complex-glycosylation, suggesting that this mutant failed to exit the ER. Cycloheximide chase analysis demonstrated that the absence of the terminally glycosylated form of 1019AAALA1023 was caused by defects in NKCC2 maturation. Accordingly, co-immunolocalization experiments revealed that 1019AAALA1023 was trapped in the ER. Finally, overexpression of a dominant negative mutant of Sar1-GTPase abolished NKCC2 maturation and cell surface expression, clearly indicating that NKCC2 export from the ER is COPII-dependent. Hence, our data indicate that in addition to the di-leucine like motifs, NKCC2 uses di-acidic exit codes for export from the ER through the COPII-dependent pathway. We propose that any naturally occurring mutation of NKCC2 interfering with this pathway could form the molecular basis of BS1.


Asunto(s)
Síndrome de Bartter , Simportadores , Humanos , Síndrome de Bartter/genética , Membrana Celular/metabolismo , Células HEK293 , Transporte de Proteínas , Simportadores/metabolismo
2.
Hum Mutat ; 42(8): 947-968, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33973684

RESUMEN

Mutations in Na-K-2Cl co-transporter, NKCC2, lead to type I Bartter syndrome (BS1), a life-threatening kidney disease. Yet, our knowledge of the molecular regulation of NKCC2 mutants remains poor. Here, we aimed to identify the molecular pathogenic mechanisms of one novel and three previously reported missense NKCC2 mutations. Co-immunolocalization studies revealed that all NKCC2 variants are not functional because they are not expressed at the cell surface due to retention in the endoplasmic reticulum (ER). Cycloheximide chase assays together with treatment by protein degradation and mannose trimming inhibitors demonstrated that the defect in NKCC2 maturation arises from ER retention and associated degradation (ERAD). Small interfering RNA (siRNA) knock-down experiments revealed that the ER lectin OS9 is involved in the ERAD of NKCC2 mutants. 4-phenyl butyric acid (4-PBA) treatment mimicked OS9 knock-down effect on NKCC2 mutants by stabilizing their immature forms. Importantly, out of the four studied mutants, only one showed an increased protein maturation upon treatment with glycerol. In summary, our study reveals that BS1 is among diseases linked to the ERAD pathway. Moreover, our data open the possibility that maturation of some ER retained NKCC2 variants is correctable by chemical chaperones offering, therefore, promising avenues in elucidating the molecular pathways governing the ERAD of NKCC2 folding mutants.


Asunto(s)
Síndrome de Bartter , Degradación Asociada con el Retículo Endoplásmico , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Mutación , Miembro 1 de la Familia de Transportadores de Soluto 12/genética , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo
3.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672238

RESUMEN

Mutations in the Na-K-2Cl co-transporter NKCC2 lead to type I Bartter syndrome, a life-threatening kidney disease. We previously showed that export from the ER constitutes the limiting step in NKCC2 maturation and cell surface expression. Yet, the molecular mechanisms involved in this process remain obscure. Here, we report the identification of chaperone stress 70 protein (STCH) and the stress-inducible heat shock protein 70 (Hsp70), as two novel binding partners of the ER-resident form of NKCC2. STCH knock-down increased total NKCC2 expression whereas Hsp70 knock-down or its inhibition by YM-01 had the opposite effect. Accordingly, overexpressing of STCH and Hsp70 exerted opposite actions on total protein abundance of NKCC2 and its folding mutants. Cycloheximide chase assay showed that in cells over-expressing STCH, NKCC2 stability and maturation are heavily impaired. In contrast to STCH, Hsp70 co-expression increased NKCC2 maturation. Interestingly, treatment by protein degradation inhibitors revealed that in addition to the proteasome, the ER associated degradation (ERAD) of NKCC2 mediated by STCH, involves also the ER-to-lysosome-associated degradation pathway. In summary, our data are consistent with STCH and Hsp70 having differential and antagonistic effects with regard to NKCC2 biogenesis. These findings may have an impact on our understanding and potential treatment of diseases related to aberrant NKCC2 trafficking and expression.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Síndrome de Bartter/genética , Sitios de Unión , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Células HEK293 , Proteínas HSP70 de Choque Térmico/genética , Humanos , Riñón/citología , Mutación , Zarigüeyas , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios y Motivos de Interacción de Proteínas , Miembro 1 de la Familia de Transportadores de Soluto 12/genética , Técnicas del Sistema de Dos Híbridos
4.
Cells ; 13(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38474353

RESUMEN

Inactivating mutations of kidney Na-K-2Cl cotransporter NKCC2 lead to antenatal Bartter syndrome (BS) type 1, a life-threatening salt-losing tubulopathy. We previously reported that this serious inherited renal disease is linked to the endoplasmic reticulum-associated degradation (ERAD) pathway. The purpose of this work is to characterize further the ERAD machinery of NKCC2. Here, we report the identification of ancient ubiquitous protein 1 (AUP1) as a novel interactor of NKCC2 ER-resident form in renal cells. AUP1 is also an interactor of the ER lectin OS9, a key player in the ERAD of NKCC2. Similar to OS9, AUP1 co-expression decreased the amount of total NKCC2 protein by enhancing the ER retention and associated protein degradation of the cotransporter. Blocking the ERAD pathway with the proteasome inhibitor MG132 or the α-mannosidase inhibitor kifunensine fully abolished the AUP1 effect on NKCC2. Importantly, AUP1 knock-down or inhibition by overexpressing its dominant negative form strikingly decreased NKCC2 polyubiquitination and increased the protein level of the cotransporter. Interestingly, AUP1 co-expression produced a more profound impact on NKCC2 folding mutants. Moreover, AUP1 also interacted with the related kidney cotransporter NCC and downregulated its expression, strongly indicating that AUP1 is a common regulator of sodium-dependent chloride cotransporters. In conclusion, our data reveal the presence of an AUP1-mediated pathway enhancing the polyubiquitination and ERAD of NKCC2. The characterization and selective regulation of specific ERAD constituents of NKCC2 and its pathogenic mutants could open new avenues in the therapeutic strategies for type 1 BS treatment.


Asunto(s)
Síndrome de Bartter , Degradación Asociada con el Retículo Endoplásmico , Femenino , Embarazo , Humanos , Retículo Endoplásmico/metabolismo , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Ubiquitinación , Proteínas de la Membrana/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12
5.
Cells ; 11(1)2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011665

RESUMEN

Mutations in the apically located kidney Na-K-2Cl cotransporter NKCC2 cause type I Bartter syndrome, a life-threatening kidney disorder. We previously showed that transport from the ER represents the limiting phase in NKCC2 journey to the cell surface. Yet very little is known about the ER quality control components specific to NKCC2 and its disease-causing mutants. Here, we report the identification of Golgi alpha1, 2-mannosidase IA (ManIA) as a novel binding partner of the immature form of NKCC2. ManIA interaction with NKCC2 takes place mainly at the cis-Golgi network. ManIA coexpression decreased total NKCC2 protein abundance whereas ManIA knock-down produced the opposite effect. Importantly, ManIA coexpression had a more profound effect on NKCC2 folding mutants. Cycloheximide chase assay showed that in cells overexpressing ManIA, NKCC2 stability and maturation are heavily hampered. Deleting the cytoplasmic region of ManIA attenuated its interaction with NKCC2 and inhibited its effect on the maturation of the cotransporter. ManIA-induced reductions in NKCC2 expression were offset by the proteasome inhibitor MG132. Likewise, kifunensine treatment greatly reduced ManIA effect, strongly suggesting that mannose trimming is involved in the enhanced ERAD of the cotransporter. Moreover, depriving ManIA of its catalytic domain fully abolished its effect on NKCC2. In summary, our data demonstrate the presence of a ManIA-mediated ERAD pathway in renal cells promoting retention and degradation of misfolded NKCC2 proteins. They suggest a model whereby Golgi ManIA contributes to ERAD of NKCC2, by promoting the retention, recycling, and ERAD of misfolded proteins that initially escape protein quality control surveillance within the ER.


Asunto(s)
Degradación Asociada con el Retículo Endoplásmico , Aparato de Golgi/enzimología , Manosidasas/metabolismo , Miembro 1 de la Familia de Transportadores de Soluto 12/metabolismo , Animales , Línea Celular , Humanos , Manosa/metabolismo , Manosidasas/química , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Zarigüeyas , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios Proteicos , Pliegue de Proteína , Estabilidad Proteica
6.
J Cell Biol ; 219(7)2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32491151

RESUMEN

The stress-induced c-Jun N-terminal kinase (JNK) controls microtubule dynamics by enhancing both microtubule growth and rescues. Here, we show that upon cell stress, JNK directly phosphorylates the microtubule rescue factor CLIP-170 in its microtubule-binding domain to increase its rescue-promoting activity. Phosphomimetic versions of CLIP-170 enhance its ability to promote rescue events in vitro and in cells. Furthermore, while phosphomimetic mutations do not alter CLIP-170's capability to form comets at growing microtubule ends, both phosphomimetic mutations and JNK activation increase the occurrence of CLIP-170 remnants on the microtubule lattice at the rear of comets. As the CLIP-170 remnants, which are potential sites of microtubule rescue, display a shorter lifetime when CLIP-170 is phosphorylated, we propose that instead of acting at the time of rescue occurrence, CLIP-170 would rather contribute in preparing the microtubule lattice for future rescues at these predetermined sites.


Asunto(s)
MAP Quinasa Quinasa 4/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas de Neoplasias/genética , Estrés Fisiológico/genética , Animales , Anisomicina/farmacología , Línea Celular , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Fibroblastos/ultraestructura , Regulación de la Expresión Génica , Células HeLa , Humanos , MAP Quinasa Quinasa 4/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/efectos de la radiación , Microtúbulos/ultraestructura , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Cloruro de Sodio/farmacología , Rayos Ultravioleta
7.
Oncotarget ; 10(7): 773-784, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30774779

RESUMEN

Some cancer cells elongate their telomeres through the ALT (alternative lengthening of telomeres) pathway, which is based on homologous recombination for the addition of telomere repeats without telomerase activity. General control non-derepressible 5 (GCN5) and P300/CBP-associated factor (PCAF), two homologous lysine acetyltransferases, exert opposite effects on the ALT pathway, inhibiting or favoring it respectively. Here we show that ALT cells are particularly sensitive to the inhibition of acetyltransferases activities using Anacardic Acid (AA). AA treatment recapitulates the effect of PCAF knockdown on several ALT features, suggesting that AA decreased the ALT mechanism through the inhibition of lysine transferase activity of PCAF, but not that of GCN5. Furthermore, AA specifically sensitizes human ALT cells to radiation as compared to telomerase-positive cells suggesting that the inhibition of lysine acetyltransferases activity may be used to increase the radiotherapy efficiency against ALT cancers.

8.
Oncotarget ; 8(16): 26269-26280, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28412741

RESUMEN

Cancer cells can use a telomerase-independent mechanism, known as alternative lengthening of telomeres (ALT), to elongate their telomeres. General control non-derepressible 5 (GCN5) and P300/CBP-associated factor (PCAF) are two homologous acetyltransferases that are mutually exclusive subunits in SAGA-like complexes. Here, we reveal that down regulation of GCN5 and PCAF had differential effects on some phenotypic characteristics of ALT cells. Our results suggest that GCN5 is present at telomeres and opposes telomere recombination, in contrast to PCAF that may indirectly favour them in ALT cells.


Asunto(s)
Estudios de Asociación Genética , Homeostasis del Telómero/genética , Telómero/genética , Factores de Transcripción p300-CBP/genética , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Expresión Génica , Técnicas de Silenciamiento del Gen , Inestabilidad Genómica , Humanos , Cuerpos de Inclusión Intranucleares/genética , Cuerpos de Inclusión Intranucleares/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patología , Unión Proteica , Intercambio de Cromátides Hermanas , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA