Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-31527037

RESUMEN

Globally, more people die annually from tuberculosis than from any other single infectious agent. Unfortunately, there is no commercially-available vaccine that is sufficiently effective at preventing acquisition of pulmonary tuberculosis in adults. In this study, pre-exposure prophylactic pulmonary delivery of active aerosolized anti-tuberculosis bacteriophage D29 was evaluated as an option for protection against Mycobacterium tuberculosis infection. An average bacteriophage concentration of approximately 1 PFU/alveolus was achieved in the lungs of mice using a nose-only inhalation device optimized with a dose simulation technique and adapted for use with a vibrating mesh nebulizer. Within 30 minutes of bacteriophage delivery, the mice received either a low dose (∼50-100 CFU), or an ultra-low dose (∼5-10 CFU), of M. tuberculosis H37Rv aerosol to the lungs. A prophylactic effect was observed with bacteriophage aerosol pre-treatment significantly decreasing M. tuberculosis burden in mouse lungs 24 hours and 3 weeks post-challenge (p < 0.05). These novel results indicate that a sufficient dose of nebulized mycobacteriophage aerosol to the lungs may be a valuable intervention to provide extra protection to health care professionals and other individuals at risk of exposure to M. tuberculosis.

2.
Eur J Immunol ; 46(12): 2719-2729, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27701733

RESUMEN

The contribution of B cells to immunity against many infectious diseases is unquestionably important and well characterized. Here, we sought to determine the role of B cells in the induction of T-helper 1 (TH 1) CD4+ T cells upon vaccination with a tuberculosis (TB) antigen combined with a TLR4 agonist. We used B-cell deficient mice (µMT-/- ), tetramer-positive CD4+ T cells, markers of memory "precursor" effector cells (MPECs), and T-cell adoptive transfers and demonstrated that the early antigen-specific cytokine-producing TH 1 responses are unaffected in the absence of B cells, however MPEC induction is strongly impaired resulting in a deficiency of the memory TH 1 response in µMT-/- mice. We further show that antigen-presentation by B cells is necessary for their role in MPEC generation using B-cell adoptive transfers from wt or MHC class II knock-out mice into µMT-/- mice. Our study challenges the view that B-cell deficiency exclusively alters the TH 1 response at memory time-points. Collectively, our results provide new insights on the multifaceted roles of B cells that will have a high impact on vaccine development against several pathogens including those requiring TH 1 cell-mediated immunity.


Asunto(s)
Presentación de Antígeno , Linfocitos B/fisiología , Factores Inmunológicos/inmunología , Subgrupos de Linfocitos T/inmunología , Células TH1/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Traslado Adoptivo , Animales , Linfocitos B/trasplante , Diferenciación Celular , Células Cultivadas , Humanos , Cadenas mu de Inmunoglobulina/genética , Memoria Inmunológica , Activación de Linfocitos , Ratones , Ratones Noqueados , Subgrupos de Linfocitos T/trasplante , Receptor Toll-Like 4/agonistas , Tuberculosis/prevención & control
3.
J Immunol ; 191(5): 2514-2525, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23904160

RESUMEN

Considerable effort has been directed to develop Mycobacterium tuberculosis vaccines to boost bacille Calmette-Guérin or for those who cannot be immunized with bacille Calmette-Guérin. We hypothesized that CD4(+) and CD8(+) T cell responses with a heterologous prime/boost vaccine approach could induce long-lived vaccine efficacy against M. tuberculosis in C57BL/6 mice. We produced an adenovirus vector expressing ID93 (Ad5-ID93) for induction of CD8 T cells to use with our candidate tuberculosis vaccine, ID93/glucopyranosyl lipid adjuvant (GLA)-stable emulsion (SE), which induces potent Th1 CD4 T cells. Ad5-ID93 generates ID93-specific CD8(+) T cell responses and induces protection against M. tuberculosis. When Ad5-ID93 is administered in a prime-boost strategy with ID93/GLA-SE, both CD4(+) and CD8(+) T cells are generated and provide protection against M. tuberculosis. In a MHC class I-deficient mouse model, all groups including the Ad5-ID93 group elicited an Ag-specific CD4(+) T cell response and significantly fewer Ag-specific CD8(+) T cells, but were still protected against M. tuberculosis, suggesting that CD4(+) Th1 T cells could compensate for the loss of CD8(+) T cells. Lastly, the order of the heterologous immunizations was critical. Long-lived vaccine protection was observed only when Ad5-ID93 was given as the boost following an ID93/GLA-SE prime. The homologous ID93/GLA-SE prime/boost regimen also induced long-lived protection. One of the correlates of protection between these two approaches was an increase in the total number of ID93-specific IFN-γ-producing CD4(+) T cells 6 mo following the last immunization. Our findings provide insight into the development of vaccines not only for tuberculosis, but other diseases requiring T cell immunity.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Linfocitos T CD8-positivos/inmunología , Inmunización Secundaria/métodos , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Adenoviridae/genética , Animales , Antígenos Bacterianos/inmunología , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Vectores Genéticos , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis , Proteínas Recombinantes de Fusión/inmunología , Tuberculosis/inmunología
4.
Proc Natl Acad Sci U S A ; 109(43): 17585-90, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045649

RESUMEN

Extensive preparation is underway to mitigate the next pandemic influenza outbreak. New vaccine technologies intended to supplant egg-based production methods are being developed, with recombinant hemagglutinin (rHA) as the most advanced program for preventing seasonal and avian H5N1 Influenza. Increased efforts are being focused on adjuvants that can broaden vaccine immunogenicity against emerging viruses and maximize vaccine supply on a worldwide scale. Here, we test protection against avian flu by using H5N1-derived rHA and GLA-SE, a two-part adjuvant system containing glucopyranosyl lipid adjuvant (GLA), a formulated synthetic Toll-like receptor 4 agonist, and a stable emulsion (SE) of oil in water, which is similar to the best-in-class adjuvants being developed for pandemic flu. Notably, a single submicrogram dose of rH5 adjuvanted with GLA-SE protects mice and ferrets against a high titer challenge with H5N1 virus. GLA-SE, relative to emulsion alone, accelerated induction of the primary immune response and broadened its durability against heterosubtypic H5N1 virus challenge. Mechanistically, GLA-SE augments protection via induction of a Th1-mediated antibody response. Innate signaling pathways that amplify priming of Th1 CD4 T cells will likely improve vaccine performance against future outbreaks of lethal pandemic flu.


Asunto(s)
Adyuvantes Inmunológicos/química , Vacunas contra la Influenza/síntesis química , Gripe Humana/prevención & control , Animales , Anticuerpos Antivirales/biosíntesis , Femenino , Hurones , Humanos , Subtipo H5N1 del Virus de la Influenza A/aislamiento & purificación , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/virología , Ratones , Ratones Endogámicos BALB C
5.
J Immunol ; 188(5): 2189-97, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22291184

RESUMEN

An effective protein-based vaccine for tuberculosis will require a safe and effective adjuvant. There are few adjuvants in approved human vaccines, including alum and the oil-in-water-based emulsions MF59 (Novartis Vaccines and Diagnostics), AS03 and AS04 (GlaxoSmithKline Biologics), AF03 (Sanofi), and liposomes (Crucell). When used with pure, defined proteins, both alum and emulsion adjuvants are effective at inducing primarily humoral responses. One of the newest adjuvants in approved products is AS04, which combines monophosphoryl lipid A, a TLR-4 agonist, with alum. In this study, we compared two adjuvants: a stable oil-in-water emulsion (SE) and a stable oil-in-water emulsion incorporating glucopyranosyl lipid adjuvant, a synthetic TLR-4 agonist (GLA-SE), each together with a recombinant protein, ID93. Both the emulsion SE and GLA-SE adjuvants induce potent cellular responses in combination with ID93 in mice. ID93/SE induced Th2-biased immune responses, whereas ID93/GLA-SE induced multifunctional CD4(+) Th1 cell responses (IFN-γ, TNF-α, and IL-2). The ID93/GLA-SE vaccine candidate induced significant protection in mice and guinea pigs, whereas no protection was observed with ID93/SE, as assessed by reductions in bacterial burden, survival, and pathology. These results highlight the importance of properly formulating subunit vaccines with effective adjuvants for use against tuberculosis.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/prevención & control , Animales , Emulsiones , Femenino , Cobayas , Lípido A/administración & dosificación , Lípido A/inmunología , Ratones , Ratones Endogámicos C57BL , Análisis de Supervivencia , Células TH1/inmunología , Células Th2/inmunología , Vacunas contra la Tuberculosis/síntesis química , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/patología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/síntesis química , Vacunas de Subunidad/inmunología
6.
J Infect Dis ; 207(8): 1242-52, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-22891286

RESUMEN

BACKGROUND: Recent advances in rational adjuvant design and antigen selection have enabled a new generation of vaccines with potential to treat and prevent infectious disease. The aim of this study was to assess whether therapeutic immunization could impact the course of Mycobacterium tuberculosis infection with use of a candidate tuberculosis vaccine antigen, ID93, formulated in a synthetic nanoemulsion adjuvant, GLA-SE, administered in combination with existing first-line chemotherapeutics rifampicin and isoniazid. METHODS: We used a mouse model of fatal tuberculosis and the established cynomolgus monkey model to design an immuno-chemotherapeutic strategy to increase long-term survival and reduce bacterial burden, compared with standard antibiotic chemotherapy alone. RESULTS: This combined approach induced robust and durable pluripotent antigen-specific T helper-1-type immune responses, decreased bacterial burden, reduced the duration of conventional chemotherapy required for survival, and decreased M. tuberculosis-induced lung pathology, compared with chemotherapy alone. CONCLUSIONS: These results demonstrate the ability of therapeutic immunization to significantly enhance the efficacy of chemotherapy against tuberculosis and other infectious diseases, with implications for treatment duration, patient compliance, and more optimal resource allocation.


Asunto(s)
Antígenos Bacterianos/inmunología , Antituberculosos/farmacología , Mycobacterium tuberculosis/inmunología , Rifampin/farmacología , Vacunas contra la Tuberculosis/uso terapéutico , Tuberculosis Pulmonar/terapia , Adyuvantes Inmunológicos/administración & dosificación , Animales , Antígenos Bacterianos/administración & dosificación , Antituberculosos/inmunología , Proteínas Bacterianas/inmunología , Quimioterapia Adyuvante/métodos , Modelos Animales de Enfermedad , Femenino , Isoniazida/administración & dosificación , Isoniazida/farmacología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Macaca fascicularis/inmunología , Macaca fascicularis/microbiología , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/patogenicidad , Rifampin/administración & dosificación , Prevención Secundaria , Análisis de Supervivencia , Factores de Tiempo , Vacunas contra la Tuberculosis/inmunología , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/inmunología , Vacunación
7.
bioRxiv ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38948876

RESUMEN

It is not clear whether human progression to active tuberculosis disease (TB) risk signatures are viable endpoint criteria for evaluations of treatments in clinical or preclinical development. TB is the deadliest infectious disease globally and more efficacious vaccines are needed to reduce this mortality. However, the immune correlates of protection for either preventing infection with Mycobacterium tuberculosis or preventing TB disease have yet to be completely defined, making the advancement of candidate vaccines through the pipeline slow, costly, and fraught with risk. Human-derived correlate of risk (COR) gene signatures, which identify an individual's risk to progressing to active TB disease, provide an opportunity for evaluating new therapies for TB with clear and defined endpoints. Though prospective clinical trials with longitudinal sampling are prohibitively expensive, characterization of COR gene signatures is practical with preclinical models. Using a 3Rs (Replacement, Reduction and Refinement) approach we reanalyzed heterogeneous publicly available transcriptional datasets to determine whether a specific set of COR signatures are viable endpoints in the preclinical pipeline. We selected RISK6, Sweeney3 and BATF2 human-derived blood-based RNA biosignatures because they require relatively few genes to assign a score and have been carefully evaluated across several clinical cohorts. Excitingly, these data provide proof-of-concept that human COR signatures seem to have high fidelity across several tissue types in the preclinical TB model pipeline and show best performance when the model most closely reflected human infection or disease conditions. Human-derived COR signatures offer an opportunity for high-throughput preclinical endpoint criteria of vaccine and drug therapy evaluations. One Sentence Summary: Human-derived biosignatures of tuberculosis disease progression were evaluated for their predictive fidelity across preclinical species and derived tissues using available public data sets.

8.
Int J Infect Dis ; 130 Suppl 1: S47-S51, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36963657

RESUMEN

OBJECTIVES: Despite concerted efforts, Mycobacterium tuberculosis (M.tb), the pathogen that causes tuberculosis (TB), continues to be a burden on global health, regaining its dubious distinction in 2022 as the world's biggest infectious killer with global COVID-19 deaths steadily declining. The complex nature of M.tb, coupled with different pathogenic stages, has highlighted the need for the development of novel immunization approaches to combat this ancient infectious agent. Intensive efforts over the last couple of decades have identified alternative approaches to improve upon traditional vaccines that are based on killed pathogens, live attenuated agents, or subunit recombinant antigens formulated with adjuvants. Massive funding and rapid advances in RNA-based vaccines for immunization have recently transformed the possibility of protecting global populations from viral pathogens, such as SARS-CoV-2. Similar efforts to combat bacterial pathogens such as M.tb have been significantly slower to implement. METHODS: In this review, we discuss the application of a novel replicating RNA (repRNA)-based vaccine formulated and delivered in nanostructured lipids. RESULTS: Our preclinical data are the first to report that RNA platforms are a viable system for TB vaccines and should be pursued with high-priority M.tb antigens containing cluster of differentiation (CD4+) and CD8+ T-cell epitopes. CONCLUSION: This RNA vaccine shows promise for use against intracellular bacteria such as M.tb as demonstrated by the feasibility of construction, enhanced induction of cell-mediated and humoral immune responses, and improved bacterial burden outcomes in in vivo aerosol-challenged preclinical TB models.


Asunto(s)
COVID-19 , Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Tuberculosis/prevención & control , Mycobacterium tuberculosis/genética , Antígenos Bacterianos
9.
AIMS Microbiol ; 9(2): 245-276, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37091818

RESUMEN

The recent pandemic caused by the SARS-CoV-2 virus continues to be an enormous global challenge faced by the healthcare sector. Availability of new vaccines and drugs targeting SARS-CoV-2 and sequelae of COVID-19 has given the world hope in ending the pandemic. However, the emergence of mutations in the SARS-CoV-2 viral genome every couple of months in different parts of world is a persistent danger to public health. Currently there is no single treatment to eradicate the risk of COVID-19. The widespread transmission of SARS-CoV-2 due to the Omicron variant necessitates continued work on the development and implementation of effective vaccines. Moreover, there is evidence that mutations in the receptor domain of the SARS-CoV-2 spike glycoprotein led to the decrease in current vaccine efficacy by escaping antibody recognition. Therefore, it is essential to actively identify the mechanisms by which SARS-CoV-2 evades the host immune system, study the long-lasting effects of COVID-19 and develop therapeutics targeting SARS-CoV-2 infections in humans and preclinical models. In this review, we describe the pathogenic mechanisms of SARS-CoV-2 infection as well as the innate and adaptive host immune responses to infection. We address the ongoing need to develop effective vaccines that provide protection against different variants of SARS-CoV-2, as well as validated endpoint assays to evaluate the immunogenicity of vaccines in the pipeline, medications, anti-viral drug therapies and public health measures, that will be required to successfully end the COVID-19 pandemic.

10.
Vaccines (Basel) ; 11(1)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36679975

RESUMEN

Mycobacterium tuberculosis (M.tb), a bacterial pathogen that causes tuberculosis disease (TB), exerts an extensive burden on global health. The complex nature of M.tb, coupled with different TB disease stages, has made identifying immune correlates of protection challenging and subsequently slowing vaccine candidate progress. In this work, we leveraged two delivery platforms as prophylactic vaccines to assess immunity and subsequent efficacy against low-dose and ultra-low-dose aerosol challenges with M.tb H37Rv in C57BL/6 mice. Our second-generation TB vaccine candidate ID91 was produced as a fusion protein formulated with a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant in a stable emulsion) or as a novel replicating-RNA (repRNA) formulated in a nanostructured lipid carrier. Protein subunit- and RNA-based vaccines preferentially elicit cellular immune responses to different ID91 epitopes. In a single prophylactic immunization screen, both platforms reduced pulmonary bacterial burden compared to the controls. Excitingly, in prime-boost strategies, the groups that received heterologous RNA-prime, protein-boost or combination immunizations demonstrated the greatest reduction in bacterial burden and a unique humoral and cellular immune response profile. These data are the first to report that repRNA platforms are a viable system for TB vaccines and should be pursued with high-priority M.tb antigens containing CD4+ and CD8+ T-cell epitopes.

11.
Tuberculosis (Edinb) ; 138: 102302, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586154

RESUMEN

Prophylactic efficacy of two different delivery platforms for vaccination against Mycobacterium avium (M. avium) were tested in this study; a subunit and an RNA-based vaccine. The vaccine antigen, ID91, includes four mycobacterial antigens: Rv3619, Rv2389, Rv3478, and Rv1886. We have shown that ID91+GLA-SE is effective against a clinical NTM isolate, M. avium 2-151 smt. Here, we extend these results and show that a heterologous prime/boost strategy with a repRNA-ID91 (replicon RNA) followed by protein ID91+GLA-SE boost is superior to the subunit protein vaccine given as a homologous prime/boost regimen. The repRNA-ID91/ID91+GLA-SE heterologous regimen elicited a higher polyfunctional CD4+ TH1 immune response when compared to the homologous protein prime/boost regimen. More significantly, among all the vaccine regimens tested only repRNA-ID91/ID91+GLA-SE induced IFN-γ and TNF-secreting CD8+ T cells. Furthermore, the repRNA-ID91/ID91+GLA-SE vaccine strategy elicited high systemic proinflammatory cytokine responses and induced strong ID91 and an Ag85B-specific humoral antibody response a pre- and post-challenge with M. avium 2-151 smt. Finally, while all prophylactic prime/boost vaccine regimens elicited a degree of protection in beige mice, the heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen provided greater pulmonary protection than the homologous protein prime/boost regimen. These data indicate that a prophylactic heterologous repRNA-ID91/ID91+GLA-SE vaccine regimen augments immunogenicity and confers protection against M. avium.


Asunto(s)
Mycobacterium tuberculosis , Vacunas de ADN , Animales , Ratones , Linfocitos T CD8-positivos , Mycobacterium avium/metabolismo , Mycobacterium tuberculosis/genética , Vacunación/métodos , Citocinas/metabolismo , Inmunización Secundaria/métodos
12.
Pharmaceuticals (Basel) ; 16(5)2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37242512

RESUMEN

Mycobacterium tuberculosis (M.tb) has infected one-quarter of the world's population and led to the deaths of 1.6 million individuals in 2021 according to estimates from the World Health Organization. The rise in prevalence of multidrug-resistant and extensively drug-resistant M.tb strains coupled with insufficient therapies to treat such strains has motivated the development of more effective treatments and/or delivery modalities. Bedaquiline, a diarylquinoline antimycobacterial agent, effectively targets mycobacterial ATP synthase but may lead to systemic complications upon oral delivery. Targeted delivery of bedaquiline to the lungs represents an alternative strategy to harness the sterilizing benefits of the drug against M.tb while mitigating off-target side effects. Two pulmonary delivery modalities were developed herein, including dry powder inhalation and liquid instillation. Despite bedaquiline's poor water solubility, spray drying was performed in predominantly aqueous conditions (≥80%) to avoid a closed-loop, inert system. Aerosols of spray-dried bedaquiline with L-leucine excipient outperformed spray-dried bedaquiline alone, demonstrating superior fine particle fraction metrics (~89% of the emitted dose below <5 µm), suitable for inhalation therapies. Furthermore, the use of a 2-hydroxypropyl-ß-cyclodextrin excipient allowed a molecular dispersion of bedaquiline in an aqueous solution for liquid instillation. Both delivery modalities were successfully administered to Hartley guinea pigs for pharmacokinetic analysis and were well-tolerated by the animals. Intrapulmonary liquid delivery of bedaquiline led to adequate serum absorption and appropriate peak serum concentrations of the drug. The liquid formulation was superior in systemic uptake compared to the powder formulation. The predominant route via which M.tb bacilli enter the body is aerosol droplets that are deposited onto airway surfaces. For this reason, we believe that further studies should focus on inhalation or intrapulmonary therapies that target the site of entry and primary site of infection for M.tb.

13.
Infect Dis Ther ; 12(6): 1605-1624, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37166567

RESUMEN

INTRODUCTION: This randomized, double-blind, placebo-controlled, phase 2a trial was conducted to evaluate the safety and immunogenicity of the ID93 + glucopyranosyl lipid adjuvant (GLA)-stable emulsion (SE) vaccine in human immunodeficiency virus (HIV)-negative, previously Bacillus Calmette-Guérin (BCG)-vaccinated, and QuantiFERON-TB-negative healthy adults in South Korea. METHODS: Adults (n = 107) with no signs or symptoms of tuberculosis were randomly assigned to receive three intramuscular injections of 2 µg ID93 + 5 µg GLA-SE, 10 µg ID93 + 5 µg GLA-SE, or 0.9% normal saline placebo on days 0, 28, and 56. For safety assessment, data on solicited adverse events (AEs), unsolicited AEs, serious AEs (SAEs), and special interest AEs were collected. Antigen-specific antibody responses were measured using serum enzyme-linked immunosorbent assay. T-cell immune responses were measured using enzyme-linked immunospot and intracellular cytokine staining. RESULTS: No SAEs, deaths, or AEs leading to treatment discontinuation were found. The solicited local and systemic AEs observed were consistent with those previously reported. Compared with adults administered with the placebo, those administered with three intramuscular vaccine injections exhibited significantly higher antigen-specific antibody levels and Type 1 T-helper cellular immune responses. CONCLUSION: The ID93 + GLA-SE vaccine induced antigen-specific cellular and humoral immune responses, with an acceptable safety profile in previously healthy, BCG-vaccinated, Mycobacterium tuberculosis-uninfected adult healthcare workers. TRIAL REGISTRATION: This clinical trial was retrospectively registered on 16 January 2019 at Clinicaltrials.gov (NCT03806686).

14.
AAPS PharmSciTech ; 13(2): 498-506, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22415641

RESUMEN

Egg phosphatidylcholine is commonly used as an emulsifier in formulations administered parenterally. However, synthetic phosphatidylcholine (PC) emulsifiers are now widely available and may be desirable substitutes for egg-derived phospholipids due to stability, purity, and material source considerations. In earlier work, we demonstrated that a squalene-1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) emulsion provided equivalent physical stability compared to a squalene-egg PC emulsion. In the present manuscript, we evaluate the physical stability of vaccine adjuvant emulsions containing a range of other synthetic phosphatidylcholine emulsifiers. Besides the POPC emulsion, the 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) emulsion showed good particle size and visual stability compared to emulsions made with other synthetic phospholipids. Moreover, comparable immune responses were elicited by squalene emulsions employing various synthetic PC or egg PC emulsifiers in combination with an inactivated influenza vaccine or a recombinant malaria antigen, and these responses were generally enhanced compared to antigen without adjuvant. Therefore, we show that (1) some synthetic PCs (DMPC, POPC, and to a lesser extent 1,2-dioleoyl-sn-glycero-3-phosphocholine) are effective stabilizers of squalene emulsion over a range of storage temperatures while others are not (1,2-distearoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and 1,2-dilauroyl-sn-glycero-3-phosphocholine) and (2) the immunogenicity of stable squalene emulsions is similar regardless of PC source.


Asunto(s)
Adyuvantes Inmunológicos , Emulsionantes/inmunología , Vacunas contra la Influenza/inmunología , Vacunas contra la Malaria/inmunología , Fosfatidilcolinas/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/química , Animales , Anticuerpos/sangre , Química Farmacéutica , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/inmunología , Estabilidad de Medicamentos , Emulsionantes/administración & dosificación , Emulsionantes/química , Emulsiones , Femenino , Humanos , Inmunización , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Inyecciones Intramusculares , Vacunas contra la Malaria/administración & dosificación , Vacunas contra la Malaria/química , Ratones , Ratones Endogámicos BALB C , Tamaño de la Partícula , Fosfatidilcolinas/administración & dosificación , Fosfatidilcolinas/química , Escualeno/química , Escualeno/inmunología , Tecnología Farmacéutica/métodos , Factores de Tiempo
15.
Microorganisms ; 10(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35889173

RESUMEN

Mycobacterium abscessus (M. abscessus) is an opportunistic pathogen usually colonizing abnormal lung airways and is often seen in patients with cystic fibrosis. Currently, there is no vaccine available for M. abscessus in clinical development. The treatment of M. abscessus-related pulmonary diseases is peculiar due to intrinsic resistance to several commonly used antibiotics. The development of either prophylactic or therapeutic interventions for M. abscessus pulmonary infections is hindered by the absence of an adequate experimental animal model. In this review, we outline the critical elements related to M. abscessus virulence mechanisms, host-pathogen interactions, and treatment challenges associated with M. abscessus pulmonary infections. The challenges of effectively combating this pathogen include developing appropriate preclinical animal models of infection, developing proper diagnostics, and designing novel strategies for treating drug-resistant M. abscessus.

16.
Front Immunol ; 13: 840225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35359957

RESUMEN

Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Vacunas contra la Tuberculosis , Tuberculosis , Vacuna BCG , Humanos , Inmunidad
17.
Tuberculosis (Edinb) ; 137: 102272, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36375278

RESUMEN

The increase of global cases of drug resistant (DR) Mycobacterium tuberculosis (M.tb) is a serious problem for the tuberculosis research community and the goals to END TB by 2030. Due to the need for advancing and screening next generation therapeutics and vaccines, we aimed to design preclinical DR models of Beijing lineage M.tb HN878 strain in different mouse backgrounds. We found escalating sensitivities of morbidity due to low dose aerosol challenge (50-100 bacilli) in CB6F1, C57BL/6 and SWR mice, respectively. We also observed that pulmonary bacterial burden at morbidity endpoints correlated inversely with survival over time between mouse strains. Interestingly, with in vitro passaging and in the process of selecting individual DR mutant colonies, we observed a significant decrease in in vivo HN878 strain virulence, which correlated with the acquisition of a large genetic duplication. We confirmed that low passage infection stocks with no or low prevalence of the duplication, including stocks directly acquired from the BEI resources biorepository, retained virulence, measured by morbidity over time. These data help confirm previous reports and emphasize the importance of monitoring virulence and stock fidelity.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Ganglionar , Tuberculosis Resistente a Múltiples Medicamentos , Ratones , Animales , Virulencia/genética , Ratones Endogámicos C57BL
18.
Front Microbiol ; 13: 935444, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36090093

RESUMEN

Mycobacterium tuberculosis (M.tb) has led to approximately 1.3 million deaths globally in 2020 according to the World Health Organization (WHO). More effective treatments are therefore required to prevent the transmission of M.tb. Although Bacille Calmette-Guérin (BCG), a prophylactic vaccine against M.tb, already exists, other vaccines are being developed that could help boost BCG's noted incomplete protection. This includes ID93 + GLA-SE, an adjuvanted protein vaccine which is being tested in Phase 2 clinical trials. The aim of this study was to test new lipid-based adjuvant formulations with ID93 in the context of a therapeutic vaccine, which we hypothesize would act as an adjunct to drug treatment and provide better outcomes, such as survival, than drug treatment alone. The recent success of another adjuvanted recombinant protein vaccine, M72 + AS01E (GlaxoSmithKline Biologicals), which after 3 years provided approximately 50% efficacy against TB pulmonary disease, is paving the way for new and potentially more effective vaccines. We show that based on selected criteria, including survival, T helper 1 cytokine responses, and resident memory T cells in the lung, that a liposomal formulation of GLA with QS-21 (GLA-LSQ) combined with ID93 provided enhanced protection over drug treatment alone.

19.
Sci Rep ; 11(1): 9040, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33907221

RESUMEN

The nontuberculous mycobacteria (NTM) Mycobacterium avium is a clinically significant pathogen that can cause a wide range of maladies, including tuberculosis-like pulmonary disease. An immunocompromised host status, either genetically or acutely acquired, presents a large risk for progressive NTM infections. Due to this quietly emerging health threat, we evaluated the ability of a recombinant fusion protein ID91 combined with GLA-SE [glucopyranosyl lipid adjuvant, a toll like receptor 4 agonist formulated in an oil-in-water stable nano-emulsion] to confer protection in both C57BL/6 (wild type) and Beige (immunocompromised) mouse models. We optimized an aerosol challenge model using a clinical NTM isolate: M. avium 2-151 smt, observed bacterial growth kinetics, colony morphology, drug sensitivity and histopathology, characterized the influx of pulmonary immune cells, and confirmed the immunogenicity of ID91 in both mouse models. To determine prophylactic vaccine efficacy against this M. avium isolate, mice were immunized with either ID91 + GLA-SE or bacillus Calmette-Guérin (BCG). Immunocompromised Beige mice displayed a delayed influx of innate and adaptive immune cells resulting in a sustained and increased bacterial burden in the lungs and spleen compared to C57BL/6 mice. Importantly, both ID91 + GLA-SE and BCG vaccines significantly reduced pulmonary bacterial burden in both mouse strains. This work is a proof-of-concept study of subunit vaccine-induced protection against NTM.


Asunto(s)
Vacuna BCG/administración & dosificación , Modelos Animales de Enfermedad , Huésped Inmunocomprometido/inmunología , Mycobacterium avium/patogenicidad , Tuberculosis/prevención & control , Vacunas de Subunidad/administración & dosificación , Animales , Vacuna BCG/inmunología , Femenino , Ratones , Ratones Endogámicos C57BL , Mycobacterium avium/metabolismo , Tuberculosis/inmunología , Tuberculosis/microbiología , Vacunación , Vacunas de Subunidad/inmunología
20.
PLoS One ; 16(3): e0247990, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33705411

RESUMEN

An estimated 10 million people developed tuberculosis (TB) disease in 2019 which underscores the need for a vaccine that prevents disease and reduces transmission. The aim of our current studies is to characterize and test a prophylactic tuberculosis vaccine comprised of ID93, a polyprotein fusion antigen, and a liposomal formulation [including a synthetic TLR4 agonist (glucopyranosyl lipid adjuvant, GLA) and QS-21] in a preclinical mouse model of TB disease. Comparisons of the ID93+GLA-LSQ vaccines are also made to the highly characterized ID93+GLA-SE oil-in-water emulsion adjuvant, which are also included these studies. The recent success of vaccine candidate M72 combined with adjuvant AS01E (GlaxoSmithKline Biologicals) in reducing progression to active disease is promising and has renewed excitement for experimental vaccines currently in the TB vaccine pipeline. The AS01E adjuvant contains monophosphoryl lipid A (MPL) and QS-21 (a saponin) in a liposomal formulation. While AS01E has demonstrated potent adjuvant activity as a component of both approved and experimental vaccines, developing alternatives to this adjuvant system will become important to fill the high demand envisioned for future vaccine needs. Furthermore, replacement sources of potent adjuvants will help to supply the demand of a TB vaccine [almost one-quarter of the world's population are estimated to have latent Mycobacterium tuberculosis (Mtb) according to the WHO 2019 global TB report], addressing (a) cost of goods, (b) supply of goods, and (c) improved efficacy of subunit vaccines against Mtb. We show that both ID93+GLA-SE (containing an emulsion adjuvant) and ID93+GLA-LSQ (containing a liposomal adjuvant) induce ID93-specific TH1 cellular immunity including CD4+CD44+ T cells expressing IFNγ, TNF, and IL-2 (using flow cytometry and intracellular cytokine staining) and vaccine-specific IgG2 antibody responses (using an ELISA). In addition, both ID93+GLA-SE and ID93+GLA-LSQ effectively decrease the bacterial load within the lungs of mice infected with Mtb. Formulations based on this liposomal adjuvant formulation may provide an alternative to AS01 adjuvant systems.


Asunto(s)
Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/uso terapéutico , Tuberculosis Pulmonar/prevención & control , Adyuvantes Inmunológicos/uso terapéutico , Animales , Antígenos Bacterianos/uso terapéutico , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Liposomas , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA