Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biol Lett ; 19(7): 20230078, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37463654

RESUMEN

Straight-tusked elephants (genus: Palaeoloxodon) including their island dwarf forms are extinct enigmatic members of the Pleistocene megafauna and the most common Pleistocene elephants after the mammoths. Their taxonomic placement has been revised several times. Using palaeogenomic evidence, previous studies suggested that the European P. antiquus has a hybrid origin, but no molecular data have been retrieved from their Asian counterparts, leaving a gap in our knowledge of the global phylogeography and population dynamics of Palaeoloxodon. Here, we captured a high-quality complete mitogenome from a Pleistocene Elephantidae molar (CADG841) from Northern China, which was previously morphologically assigned to the genus Elephas (Asian elephant), and partial mitochondrial sequences (838 bp) of another Palaeoloxodon sp. specimen (CADG1074) from Northeastern China. We found that both Chinese specimens cluster with a 244 000-year-old P. antiquus (specimen name: WE) from Western Europe, suggesting that this clade may represent a population with a large spatial span across Eurasia. Based on the fossil record and the molecular dating of both the divergences of different Palaeoloxodon mitochondrial clades and previously determined hybridization events, we propose that this Eurasian-wide WE clade provides evidence for an earlier migration and/or another hybridization event that happened in the evolutionary history of straight-tusked elephants.


Asunto(s)
Elefantes , Animales , Evolución Biológica , ADN Mitocondrial/genética , Elefantes/genética , Fósiles , Filogenia , Filogeografía
2.
Proc Natl Acad Sci U S A ; 115(11): E2566-E2574, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29483247

RESUMEN

Elephantids are the world's most iconic megafaunal family, yet there is no comprehensive genomic assessment of their relationships. We report a total of 14 genomes, including 2 from the American mastodon, which is an extinct elephantid relative, and 12 spanning all three extant and three extinct elephantid species including an ∼120,000-y-old straight-tusked elephant, a Columbian mammoth, and woolly mammoths. Earlier genetic studies modeled elephantid evolution via simple bifurcating trees, but here we show that interspecies hybridization has been a recurrent feature of elephantid evolution. We found that the genetic makeup of the straight-tusked elephant, previously placed as a sister group to African forest elephants based on lower coverage data, in fact comprises three major components. Most of the straight-tusked elephant's ancestry derives from a lineage related to the ancestor of African elephants while its remaining ancestry consists of a large contribution from a lineage related to forest elephants and another related to mammoths. Columbian and woolly mammoths also showed evidence of interbreeding, likely following a latitudinal cline across North America. While hybridization events have shaped elephantid history in profound ways, isolation also appears to have played an important role. Our data reveal nearly complete isolation between the ancestors of the African forest and savanna elephants for ∼500,000 y, providing compelling justification for the conservation of forest and savanna elephants as separate species.


Asunto(s)
Elefantes/genética , Mamuts/genética , Mastodontes/genética , Animales , Elefantes/clasificación , Evolución Molecular , Extinción Biológica , Fósiles , Flujo Génico , Genoma , Genómica/historia , Historia Antigua , Mamuts/clasificación , Mastodontes/clasificación , Filogenia
3.
Sci Adv ; 10(3): eadk0818, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38232155

RESUMEN

Woolly mammoths in mainland Alaska overlapped with the region's first people for at least a millennium. However, it is unclear how mammoths used the space shared with people. Here, we use detailed isotopic analyses of a female mammoth tusk found in a 14,000-year-old archaeological site to show that she moved ~1000 kilometers from northwestern Canada to inhabit an area with the highest density of early archaeological sites in interior Alaska until her death. DNA from the tusk and other local contemporaneous archaeological mammoth remains revealed that multiple mammoth herds congregated in this region. Early Alaskans seem to have structured their settlements partly based on mammoth prevalence and made use of mammoths for raw materials and likely food.


Asunto(s)
Mamuts , Humanos , Animales , Femenino , Recién Nacido , Mamuts/genética , ADN , Canadá , Alaska , Fósiles
4.
iScience ; 25(1): 103559, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34988402

RESUMEN

The extinct Gomphotheriidae is the only proboscidean family that colonized South America. The phylogenetic position of the endemic taxa has been through several revisions using morphological comparisons. Morphological studies are enhanced by paleogenetic analyses, a powerful tool to resolve phylogenetic relationships; however, ancient DNA (aDNA) preservation decreases in warmer regions. Despite the poor preservation conditions for aDNA in humid, sub-tropical climates, we recovered ∼3,000 bp of mtDNA of Notiomastodon platensis from the Arroyo del Vizcaíno site, Uruguay. Our calibrated phylogeny places Notiomastodon as a sister taxon to Elephantidae, with a divergence time of ∼13.5 Ma. Additionally, a total evidence analysis combining morphological and paleogenetic data shows that the three most diverse clades within Proboscidea diverged during the early Miocene, coinciding with the formation of a land passage between Africa and Eurasia. Our results are a further step toward aDNA analyses on Pleistocene samples from subtropical regions and provide a framework for proboscidean evolution.

5.
Curr Biol ; 32(4): 851-860.e7, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35016010

RESUMEN

Traditionally, paleontologists have relied on the morphological features of bones and teeth to reconstruct the evolutionary relationships of extinct animals.1 In recent decades, the analysis of ancient DNA recovered from macrofossils has provided a powerful means to evaluate these hypotheses and develop novel phylogenetic models.2 Although a great deal of life history data can be extracted from bones, their scarcity and associated biases limit their information potential. The paleontological record of Beringia3-the unglaciated areas and former land bridge between northeast Eurasia and northwest North America-is relatively robust thanks to its perennially frozen ground favoring fossil preservation.4,5 However, even here, the macrofossil record is significantly lacking in small-bodied fauna (e.g., rodents and birds), whereas questions related to migration and extirpation, even among well-studied taxa, remain crudely resolved. The growing sophistication of ancient environmental DNA (eDNA) methods have allowed for the identification of species within terrestrial/aquatic ecosystems,6-12 in paleodietary reconstructions,13-19 and facilitated genomic reconstructions from cave contexts.8,20-22 Murchie et al.6,23 used a capture enrichment approach to sequence a diverse range of faunal and floral DNA from permafrost silts deposited during the Pleistocene-Holocene transition.24 Here, we expand on their work with the mitogenomic assembly and phylogenetic placement of Equus caballus (caballine horse), Bison priscus (steppe bison), Mammuthus primigenius (woolly mammoth), and Lagopus lagopus (willow ptarmigan) eDNA from multiple permafrost cores spanning the last 40,000 years. We identify a diverse metagenomic spectra of Pleistocene fauna and identify the eDNA co-occurrence of distinct Eurasian and American mitogenomic lineages.


Asunto(s)
ADN Ambiental , Genoma Mitocondrial , Mamuts , Hielos Perennes , Animales , ADN Antiguo , ADN Mitocondrial/genética , Ecosistema , Fósiles , Caballos/genética , Mamuts/genética , Filogenia
6.
Sci Adv ; 8(5): eabl6496, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119923

RESUMEN

Steller's sea cow, an extinct sirenian and one of the largest Quaternary mammals, was described by Georg Steller in 1741 and eradicated by humans within 27 years. Here, we complement Steller's descriptions with paleogenomic data from 12 individuals. We identified convergent evolution between Steller's sea cow and cetaceans but not extant sirenians, suggesting a role of several genes in adaptation to cold aquatic (or marine) environments. Among these are inactivations of lipoxygenase genes, which in humans and mouse models cause ichthyosis, a skin disease characterized by a thick, hyperkeratotic epidermis that recapitulates Steller's sea cows' reportedly bark-like skin. We also found that Steller's sea cows' abundance was continuously declining for tens of thousands of years before their description, implying that environmental changes also contributed to their extinction.


Asunto(s)
Dugong , Animales , Bovinos , Femenino , Mamíferos , Ratones , Fenotipo
7.
Curr Biol ; 31(16): 3606-3612.e7, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34146486

RESUMEN

Evolution on islands, together with the often extreme phenotypic changes associated with it, has attracted much interest from evolutionary biologists. However, measuring the rate of change of phenotypic traits of extinct animals can be challenging, in part due to the incompleteness of the fossil record. Here, we use combined molecular and fossil evidence to define the minimum and maximum rate of dwarfing in an extinct Mediterranean dwarf elephant from Puntali Cave (Sicily).1 Despite the challenges associated with recovering ancient DNA from warm climates,2 we successfully retrieved a mitogenome from a sample with an estimated age between 175,500 and 50,000 years. Our results suggest that this specific Sicilian elephant lineage evolved from one of the largest terrestrial mammals that ever lived3 to an island species weighing less than 20% of its original mass with an estimated mass reduction between 0.74 and 200.95 kg and height reduction between 0.15 and 41.49 mm per generation. We show that combining ancient DNA with paleontological and geochronological evidence can constrain the timing of phenotypic changes with greater accuracy than could be achieved using any source of evidence in isolation.


Asunto(s)
ADN Antiguo , Elefantes , Fósiles , Animales , ADN Mitocondrial/genética , Elefantes/genética , Extinción Biológica , Filogenia , Sicilia
8.
Elife ; 62017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28585920

RESUMEN

The straight-tusked elephants Palaeoloxodon spp. were widespread across Eurasia during the Pleistocene. Phylogenetic reconstructions using morphological traits have grouped them with Asian elephants (Elephas maximus), and many paleontologists place Palaeoloxodon within Elephas. Here, we report the recovery of full mitochondrial genomes from four and partial nuclear genomes from two P. antiquus fossils. These fossils were collected at two sites in Germany, Neumark-Nord and Weimar-Ehringsdorf, and likely date to interglacial periods ~120 and ~244 thousand years ago, respectively. Unexpectedly, nuclear and mitochondrial DNA analyses suggest that P. antiquus was a close relative of extant African forest elephants (Loxodonta cyclotis). Species previously referred to Palaeoloxodon are thus most parsimoniously explained as having diverged from the lineage of Loxodonta, indicating that Loxodonta has not been constrained to Africa. Our results demonstrate that the current picture of elephant evolution is in need of substantial revision.


Asunto(s)
Elefantes/genética , Evolución Molecular , Fósiles , Genómica , Animales , ADN Mitocondrial/genética , Genoma Mitocondrial , Filogenia , Análisis de Secuencia de ADN
9.
Nat Commun ; 8: 15951, 2017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28654082

RESUMEN

The unusual mix of morphological traits displayed by extinct South American native ungulates (SANUs) confounded both Charles Darwin, who first discovered them, and Richard Owen, who tried to resolve their relationships. Here we report an almost complete mitochondrial genome for the litoptern Macrauchenia. Our dated phylogenetic tree places Macrauchenia as sister to Perissodactyla, but close to the radiation of major lineages within Laurasiatheria. This position is consistent with a divergence estimate of ∼66 Ma (95% credibility interval, 56.64-77.83 Ma) obtained for the split between Macrauchenia and other Panperissodactyla. Combined with their morphological distinctiveness, this evidence supports the positioning of Litopterna (possibly in company with other SANU groups) as a separate order within Laurasiatheria. We also show that, when using strict criteria, extinct taxa marked by deep divergence times and a lack of close living relatives may still be amenable to palaeogenomic analysis through iterative mapping against more distant relatives.


Asunto(s)
Euterios/genética , Evolución Molecular , Genoma Mitocondrial , Animales , Euterios/clasificación , Fósiles , Filogenia , América del Sur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA