Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioconjug Chem ; 32(10): 2205-2212, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34565149

RESUMEN

A significant unmet need exists for the delivery of biologic drugs such as polypeptides or nucleic acids to the central nervous system for the treatment and understanding of neurodegenerative diseases. Naturally occurring bacterial toxins have been considered as tools to meet this need. However, due to the complexity of tethering macromolecular drugs to toxins and the inherent dangers of working with large quantities of recombinant toxins, no such route has been successfully exploited. Developing a method where a bacterial toxin's nontoxic targeting subunit can be assembled with a drug immediately prior to in vivo administration has the potential to circumvent some of these issues. Using a phage-display screen, we identified two antibody mimetics, anticholera toxin Affimer (ACTA)-A2 and ACTA-C6 that noncovalently associate with the nonbinding face of the cholera toxin B-subunit. In a first step toward the development of a nonviral motor neuron drug-delivery vehicle, we show that Affimers can be selectively delivered to motor neurons in vivo.


Asunto(s)
Toxina del Cólera , Toxinas Bacterianas , Inmunoglobulinas , Neuronas Motoras , Péptidos
2.
Chembiochem ; 17(8): 753-8, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26818742

RESUMEN

High-throughput studies have been widely used to identify protein-protein interactions; however, few of these candidate interactions have been confirmed in vitro. We have used a combination of isothermal titration calorimetry and fluorescence anisotropy to screen candidate interactions within the pantothenate biosynthetic pathway. In particular, we observed no interaction between the next enzyme in the pathway, pantothenate synthetase (PS), and aspartate decarboxylase, but did observe an interaction between PS and the putative Nudix hydrolase, YfcD. Confirmation of the interaction by fluorescence anisotropy was dependent upon labelling an adventitiously formed glycine on the protein N-terminal affinity purification tag by using Sortase. Subsequent formation of the protein-protein complex led to apparent restriction of the dynamics of this tag, thus suggesting that this approach could be generally applied to a subset of other protein-protein interaction complexes.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Ácido Pantoténico/biosíntesis , Aminoaciltransferasas/aislamiento & purificación , Proteínas Bacterianas/aislamiento & purificación , Vías Biosintéticas , Cisteína Endopeptidasas/aislamiento & purificación , Polarización de Fluorescencia , Estructura Molecular , Ácido Pantoténico/química , Péptido Sintasas/metabolismo , Unión Proteica , Conformación Proteica
3.
Nat Commun ; 15(1): 7925, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271664

RESUMEN

Glycan-mediated interactions play a crucial role in biology and medicine, influencing signalling, immune responses, and disease pathogenesis. However, the use of glycans in biosensing and diagnostics is limited by cross-reactivity, as certain glycan motifs can be recognised by multiple biologically distinct protein receptors. To address this specificity challenge, we report the enzymatic synthesis of a 150-member library of site-specifically fluorinated Lewisx analogues ('glycofluoroforms') using naturally occurring enzymes and fluorinated monosaccharides. Subsequent incorporation of a subset of these glycans into nanoparticles or a microarray revealed a striking spectrum of distinct binding intensities across different proteins that recognise Lewisx. Notably, we show that for two proteins with unique binding sites for Lewisx, glycofluoroforms exhibited enhanced binding to one protein, whilst reduced binding to the other, with selectivity governed by fluorination patterns. We finally showcase the potential diagnostic utility of this approach in glycofluoroform-mediated bacterial toxin detection by lateral flow.


Asunto(s)
Polisacáridos , Polisacáridos/metabolismo , Polisacáridos/química , Unión Proteica , Sitios de Unión , Humanos , Halogenación , Antígeno Lewis X/metabolismo , Antígeno Lewis X/química , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA