Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(30): e2312036, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38396208

RESUMEN

Vanadium-based materials, due to their diverse valence states and open-framework lattice, are promising cathodes for aqueous zinc ion batteries (AZIBs), but encounters the major challenges of in situ electrochemical activation process, potent polarity of the aqueous electrolyte and periodic expansion/contraction for efficient Zn2+ storage. Herein, architecting vanadium nitride (VN) nanosheets over titanium-based hollow nanoarrays skeletal host (denoted VNTONC) can simultaneously modulate address those challenges by creating multiple interfaces and maintaining the (1 1 1) phase of VN, which optimizes the Zn2+ storage and the stability of VN. Benefiting from the modulated crystalline thermodynamics during the electrochemical activation of VN, two outcomes are achieved; I) the cathode transforms into a nanocrystalline structure with increased active sites and higher conductivity and; II) a significant portion of the (1 1 1) crystal facets is retained in the process leading to the additional Zn2+ storage capacity. As a result, the as-prepared VNTONC electrode demonstrates remarkable discharge capacities of 802.5 and 331.8 mAh g-1 @ 0.5 and 6.0 A g-1, respectively, due to the enhanced kinetics as validated by theoretical calculations. The assembled VNTONC||Zn flexible ZIB demonstrates excellent Zn storage properties up to 405.6 mAh g-1, and remarkable robustness against extreme operating conditions.

2.
Small ; 20(22): e2307103, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213015

RESUMEN

Flexible lithium-ion batteries (FLIBs) are intensively studied using free-standing transition metal oxides (TMOs)-based anode materials. However, achieving high areal capacity TMO-based anode materials is yet to be effectively elucidated owing to the poor adhesion of the active materials to the flexible substrate resulting in low active mass loading, and hence low areal capacity is realized. Herein, a novel monolithic rutile TiO2 microparticles on carbon cloth (ATO/CC) that facilitate the flower-like arrangement of TiO2 nanowires (denoted ATO/CC/OTO) is demonstrated as high areal capacity anode for FLIBs. The optimized ATO/CC/OTO anode exhibits high areal capacity (5.02 mAh cm-2@0.4 mA cm-2) excellent rate capability (1.17 mAh cm-2@5.0 mA cm-2) and remarkable cyclic stability (over 500 cycles). A series of morphological, kinetic, electrochemical, in situ Raman, and theoretical analyses reveal that the rational phase boundaries between the microparticles and nanowires contribute to promoting the Li storage activity. Furthermore, a 16.0 cm2 all-FLIB pouch cell assembled based on the ATO/CC/OTO anode and LiNiCoMnO2 cathode coated on ATO/CC (ATO/CC/LNCM) exhibits impressive flexibility under different folding conditions, creating opportunity for the development of high areal capacity anodes in future flexible energy storage devices.

3.
Small ; 20(31): e2311773, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38446094

RESUMEN

Active sites, mass loading, and Li-ion diffusion coefficient are the benchmarks for boosting the areal capacity and storage capability of electrode materials for lithium-ion batteries. However, simultaneously modulating these criteria to achieve high areal capacity in LIBs remains challenging. Herein, MoS2 is considered as a suitable electroactive host material for reversible Li-ion storage and establish an endogenous multi-heterojunction strategy with interfacial Mo-C/N-Mo-S coordination bonding that enables the concurrent regulation of these benchmarks. This strategy involves architecting 3D integrated conductive nanostructured frameworks composed of Mo2C-MoN@MoS2 on carbon cloth (denoted as C/MMMS) and refining the sluggish kinetics in the MoS2-based anodes. Benefiting from the rich hetero-interface active sites, optimized Li adsorption energy, and low diffusion barrier, C/MMMS reaches a mass loading of 12.11 mg cm-2 and showcases high areal capacity and remarkable rate capability of 9.6 mAh cm-2@0.4 mA cm-2 and 2.7 mAh cm-2@6.0 mA cm-2, respectively, alongside excellent stability after 500 electrochemical cycles. Moreover, this work not only affirms the outstanding performance of the optimized C/MMMS as an anode material for supercapacitors, underscoring its bifunctionality but also offers valuable insight into developing endogenous transition metal compound electrodes with high mass loading for the next-generation high areal capacity energy storage devices.

4.
Small ; 18(47): e2204534, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36228094

RESUMEN

The electric-field effect is an important factor to enhance the charge diffusion and transfer kinetics of interfacial electrode materials. Herein, by designing a heterojunction, the influence of the electric-field effect on the kinetics of the MoS2 as cathode materials for aqueous Zn-ion batteries (AZIBs) is deeply investigated. The hybrid heterojunction is developed by hydrothermal growth of MoS2 nanosheets on robust titanium-based transition metal compound ([titanium nitride, TiN] and [titanium oxide, TiO2 ]) nanowires, denoted TNC@MoS2 and TOC@MoS2 NWS, respectively. Benefiting from the heterostructure architecture and electric-field effect, the TNC@MoS2 electrodes exhibit an impressive rate performance of 200 mAh g-1 at 50 mA g-1 and cycling stability over 3000 cycles. Theoretical studies reveal that the hybrid architecture exhibits a large-scale electric-field effect at the interface between TiN and MoS2 , enhances the adsorption energy of Zn-ions, and increases their charge transfer, which leads to accelerated diffusion kinetics. In addition, the electric-field effect can also be effectively applied to TiO2 and MoS2 , confirming that the concept of heterostructures stimulating electric-field can provide a relevant understanding for the architecture of other cathode materials for AZIBs and beyond.

5.
Small ; 18(9): e2105331, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34913585

RESUMEN

Interfacial engineering and elemental doping are the two parameters to enhance the catalytic behavior of cobalt nitrides for the alkaline hydrogen evolution reaction (HER). However, simultaneously combining these two parameters to improve the HER catalytic properties of cobalt nitrides in alkaline media is rarely reported and also remains challenging in acidic media. Herein, it is demonstrated that high-valence non-3d metal and non-metal integration can simultaneously achieve Co-based nitride/oxide interstitial compound phase boundaries on stainless steel mesh (denoted Mo-Co5.47 N/N-CoO) for efficient HER in alkaline and acidic media. Density functional theory (DFT) calculations show that the unique structure does not only realize multi-active sites, enhanced water dissociation kinetics, and low hydrogen adsorption free energy in alkaline media, but also enhances the positive charge density of hydrogen ions (H+ ) to effectively allow H+ to receive electrons from the catalysts surface toward promoting the HER in acidic media. As a result, the as-prepared Mo-Co5.47 N/N-CoO demands HER overpotential of -28 mV@10 mA cm-2 in an alkaline medium, and superior to the commercial Pt/C at a current density > 44 mA cm-2 in acidic medium. This work paves a useful strategy to design efficient cobalt-based electrocatalysts for HER and beyond.

6.
Small ; 17(26): e2100778, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34060232

RESUMEN

The ever-growing portable electronics and electric vehicle draws the attention of scaling up of energy storage systems with high areal-capacity. The concept of thick electrode designs has been used to improve the active mass loading toward achieving high overall energy density. However, the poor rate capabilities of electrode material owing to increasing electrode thickness significantly affect the rapid transportation of ionic and electron diffusion kinetics. Herein, a new concept named "sub-thick electrodes" is successfully introduced to mitigate the Li-ion storage performance of electrodes. This is achieved by using commercial nickel foam (NF) to develop a monolithic 3D with rich in situ heterogeneous interfaces anode (Cu3 P-Ni2 P-NiO, denoted NF-CNNOP) to reinforce the adhesive force of the active materials on NF as well as contribute additional capacity to the electrode. The as-prepared NF-CNNOP electrode displays high reversible and rate areal capacities of 6.81 and 1.50 mAh cm-2 at 0.40 and 6.0 mA cm-2 , respectively. The enhanced Li-ion storage capability is attributed to the in situ interfacial engineering within the NiO, Ni2 P, and Cu3 P and the 3D consecutive electron conductive network. In addition, cyclic voltammetry, charge-discharge curves, and symmetric cell electrochemical impedance spectroscopy consistently reveal improved pseudocapacitance with enhanced transports kinetics in this sub-thick electrodes.

7.
Chemistry ; 25(26): 6575-6583, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-30892755

RESUMEN

In the work reported herein, the electrocatalytic properties of Co3 O4 in hydrogen and oxygen evolution reactions have been significantly enhanced by coating a shell layer of a copper-based metal-organic framework on Co3 O4 porous nanowire arrays and using the products as high-performance bifunctional electrocatalysts for overall water splitting. The coating of the copper-based metal-organic framework resulted in the hybridization of the copper-embedded protective carbon shell layer with Co3 O4 to create a strong Cu-O-Co bonding interaction for efficient hydrogen adsorption. The hybridization also led to electronically induced oxygen defects and nitrogen doping to effectively enhance the electrical conductivity of Co3 O4 . The optimal as-prepared core-shell hybrid material displayed excellent overall-water-splitting catalytic activity that required overall voltages of 1.45 and 1.57 V to reach onset and a current density of 10 mA cm-2 , respectively. This is the first report to highlight the relevance of hybridizing MOF-based co-catalysts to boost the electrocatalytic performance of nonprecious transition-metal oxides.

8.
Nanoscale ; 16(8): 4325-4332, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38357773

RESUMEN

Nickel nitride (Ni3N) is a promising electrocatalyst for the hydrogen evolution reaction (HER) owing to its excellent metallic features and has been demonstrated to exhibit considerable activity for water oxidation. However, its undesirable characteristics as an HER electrocatalyst due to its poor unfavourable d-band energy level significantly limit its water dissociation kinetics. Herein, the HER electrocatalytic activity of Ni3N was prominently enhanced via the simultaneous incorporation of bi-cations (vanadium (V) and iron (Fe), denoted as V-Fe-Ni3N). The optimized V-Fe-Ni3N displays impressive performance with an overpotential of 69 mV at 10 mA cm-2 and good stability in 1.0 M KOH, which is remarkably better than pristine Ni3N, V-doped Ni3N, and Fe-doped Ni3N and considerably closer to a commercial Pt/C catalyst. Based on density functional theory (DFT) studies, V and Fe atoms not only serve as active sites for promoting water dissociation kinetics but also tune the electronic structure of Ni3N to achieve optimized hydrogen adsorption capabilities. This work presents an inclusive understanding of the rational designing of high-performance transition metal nitride-based electrocatalysts for hydrogen production. Its electrocatalytic performance can be significantly enhanced by doping transition metal cations.

9.
J Colloid Interface Sci ; 660: 157-165, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38241864

RESUMEN

Valence modulation of transition metal oxides represents a highly effective approach in designing high-performance catalysts, particularly for pivotal applications such as the hydrogen evolution reaction (HER) in solar/electric water splitting and the hydrogen economy. Recently, there has been a growing interest in high-valence transition metal-based electrocatalysts (HVTMs) due to their demonstrated superiority in HER performance, attributed to the fundamental dynamics of charge transfer and the evolution of intermediates. Nevertheless, the synthesis of HVTMs encounters considerable thermodynamic barriers, which presents challenges in their preparation. Moreover, the underlying mechanism responsible for the enhancement in HVTMs still needs to be discovered. Hence, the universal synthesis strategies of the HVTMs are discussed, and direct Raman spectroscopic evidence for intermediates regulation is revealed to guide the further design of the HVTM electrocatalysts. This work offers new insights for facile designing of HVTMs electrocatalysts for energy conversion and storage through adjusting the reaction pathway.

10.
Small Methods ; 7(4): e2201472, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36802208

RESUMEN

Transition metal layered double hydroxides, especially nickel-iron layered double hydroxide (NiFe-LDH) shows significant advancement as efficient oxygen evolution reaction (OER) electrocatalyst but also plays a momentous role as a precursor for NiFe-based hydrogen evolution reaction (HER) catalysts. Herein, a simple strategy for developing Ni-Fe-derivative electrocatalysts via phase evolution of NiFe-LDH under controllable annealing temperatures in an argon atmosphere is reported. The optimized catalyst annealed at 340 o C (denoted NiO/FeNi3 ) exhibits superior HER properties with an ultralow overpotential of 16 mV@10 mA cm-2 . Density functional theory simulation and in situ Raman analyses reveal that the excellent HER properties of the NiO/FeNi3 can be attributed to the strong electronic interaction at the interface of the metallic FeNi3 and semiconducting NiO, which optimizes the H2 O and H adsorption energies for efficient HER and OER catalytic processes. This work will provide rational insights into the subsequent development of related HER electrocatalysts and other corresponding compounds via LDH-based precursors.

11.
J Colloid Interface Sci ; 650(Pt B): 1679-1688, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37499624

RESUMEN

The direct oxidation of three-dimensional nickel foam (3D NF) to nickel oxide (NiO) as integrated anode material for lithium-ion batteries (LIBs) has attracted significant attention towards achieving high-areal-capacity and high-energy density LIBs. However, the rate capability of such monolithic NiO in LIBs usually falls off rapidly due to the poor electrical conductivity that hindered its ionic transport kinetics. Herein, to ease the ionic transport constrains, a surfactant-regulated strategy is developed for preparing in-situ core-double-shell architecture that consists of core nickel skeleton, dense nickel oxide shell and porous nickel oxide nanosheets (NS) shell as anode materials for LIBs. Among the three employed surfactants including cationic surfactant, anionic surfactant and nonionic surfactant, the anionic surfactant (sodium dodecyl sulfate, SDS) modulated anode denoted SDS-NF@NiONS exhibits ultrahigh reversible areal capacity of 8.64 mAh cm-2@ 0.4 mA cm-2, and excellent rate areal capacity of 5.20 mAh cm-2 @ 3.0 mA cm-2, which did not only show the best ever reported NiO-based high-areal-capacity based electrodes, but also demonstrate impressive performance in practical full cell LIBs. In addition, in-situ Raman and kinetic analyses confirm the mechanism of Li-ion storage and facile ionic transport kinetics in this proposed design.

12.
Small Methods ; 7(6): e2201659, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37093170

RESUMEN

The exploration of cost-effective multifunctional electrodes with high activity toward energy storage and conversion systems, such as self-powered alkaline water electrolysis, is very meaningful, although studies remain quite limited. Herein, a heterogeneous nickel-molybdenum (NiMo)-based electrode is fabricated for the first time as a trifunctional electrode for asymmetric supercapacitor (ASC), hydrogen evolution reaction, and oxygen evolution reaction. The trifunctional electrode consists of Ni4 Mo and MoO2 (denoted Ni4 Mo/MoO2 ) with hierarchical nanorod heterostructure and abundant heterogeneous nanointerfaces creating sufficient active sites and efficient charge transfer for achieving high performance self-power electrochemical devices. The ASC consists of the as-prepared Ni4 Mo/MoO2 positive electrode, showing a broad potential window of 1.6 V, and a maximum energy density of 115.6 Wh kg-1 , while the alkaline overall water splitting (OWS) assembled using the as-prepared Ni4 Mo/MoO2 as bifunctional catalysts only requires a low cell voltage of 1.48 V to achieve a current density of 10 mA cm-2 in aqueous alkaline electrolyte. Finally, by integrating the Ni4 Mo/MoO2 -based ASC and OWS devices, an aqueous self-powered OWS is assembled, which self-power the OWS to generate hydrogen gas and oxygen gas, verifying great potential of the as-prepared Ni4 Mo/MoO2 for sustainable and renewable energy storage and conversion system.

13.
ACS Appl Mater Interfaces ; 13(14): 16516-16527, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33783183

RESUMEN

Enabling materials with distinct features toward achieving high-performance energy storage devices is of huge importance but highly challenging. Commercial carbon cloth (CC), because of its appealing chemical and mechanical properties, has been proven to be an excellent conductive substrate for active electrode materials. However, its performance is notably poor when directly used as an electrode in energy storage, due to its low theoretical capacity and surface area. Herein, we successfully endow the CC with enhanced storage capacity via formation of a π-π stacking interaction by integrating electrochemically activated CC (denoted CC/ACC) with biomass-derived carbon (BMDC) (denoted π-CC/ECC@BMDC). The π-CC/ECC@BMDC electrode displays excellent storage performance with a high capacity of 2.53 mAh cm-2 under 0.2 mA cm-2 when used as anode material for lithium ion batteries (LIBs). Due to the induction energy, the negatively charged molecules of the CC/ACC functional groups interact with the BMDC during carbonization, creating the π-π stacking interaction. Based on first-principles calculations, the structural design of the tri-layer carbon enables the movement of electrons around the π-π stacking interaction, which significantly facilitates rapid transportation of electrons, creates three-dimensional (3D) ion tunnels for fast transportation of ions, and improves the electrode's mechanical and electronic properties.

14.
ACS Appl Mater Interfaces ; 12(51): 57093-57101, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33296164

RESUMEN

The water dissociation step (H2O + M + e- → M - Hads + OH-) is a crucial one toward achieving high-performance hydrogen evolution reaction (HER). The application of electronic conducting polymers (ECPs), such as polypyrrole (PPy), as the electrocatalyst for HER is rarely reported because of their poor adsorption energy per water molecule, which hinders the Volmer step. Herein, we strongly enrich PPy hollow microspheres (PPy-HMS) with attractive HER activity by enhancing their hydrophilic properties through hybridization with good water affinity SiO2. The as-prepared PPy-coated SiO2 (PPy@SiO2-HMS) achieves a current density of 10 mA cm-2 at -123 mV, which is lower than that of pristine PPy-HMS (-192 mV). Raman and X-ray photospectroscopy analyses reveal that the enhanced HER catalytic capability can be attributed to the strong electronic couplings between PPy and SiO2, and this improves the adsorption energy per water molecule and in turn accelerates the water dissociation kinetics on PPy. This work highlights the potential application of low-cost ECPs as promising electrocatalysts for water electrolysis.

15.
ACS Nano ; 14(4): 5027-5035, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32196308

RESUMEN

Cobalt oxide (Co3O4) delivers a poor capacity when applied in large-sized alkali metal-ion systems such as potassium-ion batteries (KIBs). Our density functional theory calculation suggests that this is due to poor conductivity, high diffusion barrier, and weak potassium interaction. N-doped carbon can effectively attract potassium ions, improve conductivity, and reduce diffusion barriers. Through interface engineering, the properties of Co3O4 can be tuned via composite design. Herein, a Co3O4@N-doped carbon composite was designed as an advanced anode for KIBs. Due to the interfacial design of the composite, K+ were effectively transported through the Co3O4@N-C composite via multiple ionic pathways. The structural design of the composite facilitated increased Co3O4 spacing, a nitrogen-doped carbon layer reduced K-ion diffusion barrier, and improved conductivity and protected the electrode from damage. Based on the entire composite, a superior capacity of 448.7 mAh/g was delivered at 50 mA/g after 40 cycles, and moreover, 213 mAh/g was retained after 740 cycles when cycled at 500 mA/g. This performance exceeds that of most metal-oxide-based KIB anodes reported in literature.

16.
Nanomaterials (Basel) ; 10(6)2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32531987

RESUMEN

Vanadium nitride (VN) shows promising electrochemical properties as an energy storage devices electrode, specifically in supercapacitors. However, the pseudocapacitive charge storage in aqueous electrolytes shows mediocre performance. Herein, we judiciously demonstrate an impressive pseudocapacitor performance by hybridizing VN nanowires with pseudocapacitive 2D-layered MoS2 nanosheets. Arising from the interfacial engineering and pseudocapacitive synergistic effect between the VN and MoS2, the areal capacitance of VN/MoS2 hybrid reaches 3187.30 mF cm-2, which is sevenfold higher than the pristine VN (447.28 mF cm-2) at a current density of 2.0 mA cm-2. In addition, an asymmetric pseudocapacitor assembled based on VN/MoS2 anode and TiN coated with MnO2 (TiN/MnO2) cathode achieves a remarkable volumetric capacitance of 4.52 F cm-3 and energy density of 2.24 mWh cm-3 at a current density of 6.0 mA cm-2. This work opens a new opportunity for the development of high-performance electrodes in unfavorable electrolytes towards designing high areal-capacitance electrode materials for supercapacitors and beyond.

17.
ACS Appl Mater Interfaces ; 11(5): 5152-5158, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30644716

RESUMEN

Cobalt nitride electrocatalysts have been investigated and proven to show excellent oxygen evolution reaction activity owing to their excellent metallic properties, but their hydrogen evolution reaction (HER) properties are rarely reported because of their unsatisfactory molecular energy level, especially the d-orbital. Herein, taking Co4N as a case study, we tune the d-orbital of metallic Co4N nanowires via rapid formation of iron oxyhydroxide (FeOOH). Experimental analyses show that FeOOH@Co4N/SSM exhibits excellent HER catalytic activity with considerable low onset overpotential (22 mV), small Tafel slope (34 mV dec-1), and excellent stability at current densities ranging from 20 to 100 mA cm-2. Additionally, theoretical assessments display that the hybridization of Co4N with FeOOH is beneficiary for optimizing and promoting the free energy of H adsorption due to the tuning of d-orbital. An overall water-splitting device assembled based on bifunctional FeOOH@Co4N/SSM delivers an onset potential of 1.48 V with excellent stability up to 4 days. This shows a new strategy for designing a high-performance water-splitting device based on cobalt-based electrocatalysts.

18.
ACS Omega ; 4(14): 16130-16138, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31592481

RESUMEN

The stainless steel mesh (SSM) has received growing consideration as an electrocatalyst for efficient hydrogen and oxygen evolution reactions. Recently, the application of SSM as an oxygen evolution reaction (OER) electrocatalyst has been more promising, while its hydrogen evolution reaction (HER) catalytic activity is very low, which definitely affects its overall water splitting activity. Herein, a simple chemical bath deposition (CBD) method followed by phosphorization is employed to significantly boost the overall water splitting performance of SSM. The CBD method could allow the voids between the SSM fibers to be filled with Ni and P. Electrocatalytic studies show that the CBD-treated and phosphorized stainless steel (denoted SSM-Ni-P) exhibits an HER overpotential of 149 mV, while the phosphorization-free CBD-treated SSM (denoted as SSM-Ni) delivers an OER overpotential of 223 mV, both at a current density of 10 mA cm-2. An asymmetric alkaline electrolyzer assembled based on the SSM-Ni-P cathode (HER) and SSM-Ni anode (OER) achieved an onset and 10 mA cm-2 current densities at an overall potential of 1.62 V, granting more prospects for the application of inexpensive and highly active electrocatalysts for electrocatalytic water splitting reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA