Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Clin Microbiol ; 52(6): 1901-10, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24648565

RESUMEN

Neisseria meningitidis is an obligate human commensal that commonly colonizes the oropharyngeal mucosa. Carriage is age dependent and very common in young adults. The relationships between carriage and invasive disease are not completely understood. In this work, we performed a longitudinal carrier study in adolescents and young adults (173 subjects). Overall, 32 subjects (18.5%) had results that were positive for meningococcal carriage in at least one visit (average monthly carriage rate, 12.1%). Only five subjects tested positive at all four visits. All meningococcal isolates were characterized by molecular and serological techniques. Multilocus sequence typing, PorA typing, and sequencing of the 4CMenB vaccine antigens were used to assess strain diversity. The majority of positive subjects were colonized by capsule null (34.4%) and capsular group B strains (28.1%), accounting for 23.5% and 29.4% of the total number of isolates, respectively. The fHbp and nhba genes were present in all isolates, while the nadA gene was present in 5% of the isolates. The genetic variability of the 4CMenB vaccine antigens in this collection was relatively high compared with that of other disease-causing strain panels. Indications about the persistence of the carriage state were limited to the time span of the study. All strains isolated from the same subject were identical or cumulated minor changes over time. The expression levels and antigenicities of the 4CMenB vaccine antigens in each strain were analyzed by the meningococcal antigen typing system (MATS), which revealed that expression can change over time in the same individual. Future analysis of antigen variability and expression in carrier strains after the introduction of the MenB vaccine will allow for a definition of its impact on nasopharyngeal/oropharyngeal carriage.


Asunto(s)
Técnicas de Tipificación Bacteriana , Portador Sano/microbiología , Infecciones Meningocócicas/microbiología , Tipificación Molecular , Neisseria meningitidis/clasificación , Neisseria meningitidis/aislamiento & purificación , Adolescente , Antígenos Bacterianos/análisis , Portador Sano/epidemiología , ADN Bacteriano/genética , Femenino , Variación Genética , Genotipo , Humanos , Italia/epidemiología , Estudios Longitudinales , Masculino , Infecciones Meningocócicas/epidemiología , Neisseria meningitidis/genética , Neisseria meningitidis/inmunología , Orofaringe/microbiología , Serotipificación , Adulto Joven
2.
BMC Microbiol ; 14: 111, 2014 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-24779381

RESUMEN

BACKGROUND: Serogroup B meningococcal (MenB) isolates currently account for approximately 90% of invasive meningococcal disease (IMD) in Greece with ST-162 clonal complex predominating. The potential of a multicomponent meningococcal B vaccine (4CMenB) recently licensed in Europe was investigated in order to find whether the aforementioned vaccine will cover the MenB strains circulating in Greece. A panel of 148 serogroup B invasive meningococcal strains was characterized by multilocus sequence typing (MLST) and PorA subtyping. Vaccine components were typed by sequencing for factor H-binding protein (fHbp), Neisserial Heparin Binding Antigen (NHBA) and Neisseria adhesin A (NadA). Their expression was explored by Meningococcal Antigen Typing System (MATS). RESULTS: Global strain coverage predicted by MATS was 89.2% (95% CI 63.5%-98.6%) with 44.6%, 38.5% and 6.1% of strains covered by one, two and three vaccine antigens respectively. NHBA was the antigen responsible for the highest coverage (78.4%), followed by fHbp (52.7%), PorA (8.1%) and NadA (0.7%). The coverage of the major genotypes did not differ significantly. The most prevalent MLST genotype was the ST-162 clonal complex , accounting for 44.6% of the strains in the panel and with a predicted coverage of 86.4%, mainly due to NHBA and fHbp. CONCLUSIONS: 4CMenB has the potential to protect against a significant proportion of Greek invasive MenB strains.


Asunto(s)
Variación Genética , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/microbiología , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/clasificación , Neisseria meningitidis Serogrupo B/aislamiento & purificación , Antígenos Bacterianos/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Grecia/epidemiología , Humanos , Infecciones Meningocócicas/inmunología , Epidemiología Molecular , Datos de Secuencia Molecular , Tipificación de Secuencias Multilocus , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/inmunología , Estudios Retrospectivos , Análisis de Secuencia de ADN
3.
Hum Vaccin Immunother ; 20(1): 2357924, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38976659

RESUMEN

The 4-component meningococcal serogroup B (MenB) vaccine, 4CMenB, the first broadly protective, protein-based MenB vaccine to be licensed, is now registered in more than 50 countries worldwide. Real-world evidence (RWE) from the last decade confirms its effectiveness and impact, with infant immunization programs showing vaccine effectiveness of 71-95% against invasive MenB disease and cross-protection against non-B serogroups, including a 69% decrease in serogroup W cases in 4CMenB-eligible cohorts in England. RWE from different countries also demonstrates the potential for additional moderate protection against gonorrhea in adolescents. The real-world safety profile of 4CMenB is consistent with prelicensure reports. Use of the endogenous complement human serum bactericidal antibody (enc-hSBA) assay against 110 MenB strains may enable assessment of the immunological effectiveness of multicomponent MenB vaccines in clinical trial settings. Equitable access to 4CMenB vaccination is required to better protect all age groups, including older adults, and vulnerable groups through comprehensive immunization policies.


Invasive meningococcal disease, caused by the bacterium Neisseria meningitidis(meningococcus), is rare but often devastating and can be deadly. Effective vaccines are available, including vaccines against meningococcal serogroup B disease. In 2013, the 4-component meningococcal serogroup B vaccine, 4CMenB, became the first broadly protective, protein-based vaccine against serogroup B to be licensed, with the second (bivalent vaccine, MenB-FHbp) licensed the following year. 4CMenB is now registered in more than 50 countries, in the majority, for infants and all age groups. In the US, it is approved for individuals aged 10­25 years. Evidence from immunization programs in the last decade, comparing vaccinated and unvaccinated individuals and the same population before and after vaccination, confirms the effectiveness and positive impact of 4CMenB against serogroup B disease. This also demonstrates that 4CMenB can provide protection against invasive diseases caused by other meningococcal serogroups. Furthermore, N. meningitidis is closely related to the bacterium that causes gonorrhea, N. gonorrhoeae, and emerging real-world evidence suggests that 4CMenB provides additional moderate protection against gonococcal disease. The safety of 4CMenB when given to large numbers of infants, children, adolescents, and adults is consistent with the 4CMenB safety profile reported before licensure.For the future, it would be beneficial to address differences among national guidelines for the recommended administration of 4CMenB, particularly where there is supportive epidemiological evidence but no equitable access to vaccination. New assays for assessing the potential effectiveness of meningococcal serogroup B vaccines in clinical trials are also required because serogroup B strains circulating in the population are extremely diverse across different countries.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Humanos , Vacunas Meningococicas/inmunología , Vacunas Meningococicas/administración & dosificación , Infecciones Meningocócicas/prevención & control , Infecciones Meningocócicas/inmunología , Infecciones Meningocócicas/epidemiología , Neisseria meningitidis Serogrupo B/inmunología , Programas de Inmunización , Gonorrea/prevención & control , Gonorrea/inmunología , Vacunación , Lactante , Adolescente , Protección Cruzada/inmunología
4.
Proc Natl Acad Sci U S A ; 107(45): 19490-5, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20962280

RESUMEN

A unique multicomponent vaccine against serogroup B meningococci incorporates the novel genome-derived proteins fHbp, NHBA, and NadA that may vary in sequence and level of expression. Measuring the effectiveness of such vaccines, using the accepted correlate of protection against invasive meningococcal disease, could require performing the serum bactericidal assay (SBA) against many diverse strains for each geographic region. This approach is impractical, especially for infants, where serum volumes are very limited. To address this, we developed the meningococcal antigen typing system (MATS) by combining a unique vaccine antigen-specific ELISA, which detects qualitative and quantitative differences in antigens, with PorA genotyping information. The ELISA correlates with killing of strains by SBA and measures both immunologic cross-reactivity and quantity of the antigens NHBA, NadA, and fHbp. We found that strains exceeding a threshold value in the ELISA for any of the three vaccine antigens had ≥80% probability of being killed by immune serum in the SBA. Strains positive for two or more antigens had a 96% probability of being killed. Inclusion of multiple different antigens in the vaccine improves breadth of coverage and prevents loss of coverage if one antigen mutates or is lost. The finding that a simple and high-throughput assay correlates with bactericidal activity is a milestone in meningococcal vaccine development. This assay allows typing of large panels of strains and prediction of coverage of protein-based meningococcal vaccines. Similar assays may be used for protein-based vaccines against other bacteria.


Asunto(s)
Antígenos Bacterianos/análisis , Técnicas de Tipificación Bacteriana/métodos , Reacciones Cruzadas/inmunología , Vacunas Meningococicas/farmacología , Neisseria meningitidis Serogrupo B/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/uso terapéutico , Ensayo de Inmunoadsorción Enzimática/métodos , Genotipo , Humanos , Vacunas Meningococicas/inmunología , Especificidad de la Especie
5.
Infect Immun ; 79(2): 970-81, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21149595

RESUMEN

Neisseria meningitidis is a commensal of the human nasopharynx but is also a major cause of septicemia and meningitis. The meningococcal factor H binding protein (fHbp) binds human factor H (fH), enabling downregulation of complement activation on the bacterial surface. fHbp is a component of two serogroup B meningococcal vaccines currently in clinical development. Here we characterize 12 fHbp subvariants for their level of surface exposure and ability to bind fH, to mediate serum resistance, and to induce bactericidal antibodies. Flow cytometry and Western analysis revealed that all strains examined expressed fHbp on their surface to different extents and bound fH in an fHbp-dependent manner. However, differences in fH binding did not always correlate with the level of fHbp expression, indicating that this is not the only factor affecting the amount of fH bound. To overcome the issue of strain variability in fHbp expression, the MC58ΔfHbp strain was genetically engineered to express different subvariants from a constitutive heterologous promoter. These recombinant strains were characterized for fH binding, and the data confirmed that each subvariant binds different levels of fH. Surface plasmon resonance revealed differences in the stability of the fHbp-fH complexes that ranged over 2 orders of magnitude, indicating that differences in residues between and within variant groups can influence fH binding. Interestingly, the level of survival in human sera of recombinant MC58 strains expressing diverse subvariants did not correlate with the level of fH binding, suggesting that the interaction of fHbp with fH is not the only function of fHbp that influences serum resistance. Furthermore, cross-reactive bactericidal activity was seen within each variant group, although the degree of activity varied, suggesting that amino acid differences within each variant group influence the bactericidal antibody response.


Asunto(s)
Anticuerpos Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Factor H de Complemento/metabolismo , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas del Sistema Complemento , Femenino , Variación Genética , Humanos , Infecciones Meningocócicas/inmunología , Infecciones Meningocócicas/microbiología , Ratones , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Conejos
6.
Infect Dis Ther ; 10(1): 307-316, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33185849

RESUMEN

INTRODUCTION: Invasive meningococcal disease (IMD) is an important public health concern. In developed countries, most IMD is caused by meningococcal serogroup B (MenB) and two protein-based MenB vaccines are currently available: the four-component vaccine 4CMenB (Bexsero, GSK) and the bivalent vaccine MenB-FHbp (Trumenba, Pfizer). Genes encoding the 4CMenB vaccine antigens are also present in strains belonging to other meningococcal serogroups. METHODS: To evaluate the potential of 4CMenB vaccination to protect adolescents against non-MenB IMD, we tested the bactericidal activity of sera from immunized adolescents on 147 (127 European and 20 Brazilian) non-MenB IMD isolates, with a serum bactericidal antibody assay using human complement (hSBA). Serum pools were prepared using samples from randomly selected participants in various clinical trials, pre- and post-vaccination: 12 adolescents who received two doses of 4CMenB 2 months apart, and 10 adolescents who received a single dose of a MenACWY conjugate vaccine (as positive control). RESULTS: 4CMenB pre-immune sera killed 7.5% of the 147 non-MenB isolates at hSBA titers ≥ 1:4. In total, 91 (61.9%) tested isolates were killed by post-dose 2 pooled sera at hSBA titers ≥ 1:4, corresponding to 44/80 (55.0%) MenC, 26/35 (74.3%) MenW, and 21/32 (65.6%) MenY isolates killed. CONCLUSION: 4CMenB vaccination in adolescents induces bactericidal killing of non-MenB isolates, suggesting that mass vaccination could impact IMD due to serogroups other than MenB.

7.
J Exp Med ; 195(11): 1445-54, 2002 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-12045242

RESUMEN

Neisseria meningitidis is a human pathogen, which, in spite of antibiotic therapy, is still a major cause of mortality due to sepsis and meningitis. Here we describe NadA, a novel surface antigen of N. meningitidis that is present in 52 out of 53 strains of hypervirulent lineages electrophoretic types (ET) ET37, ET5, and cluster A4. The gene is absent in the hypervirulent lineage III, in N. gonorrhoeae and in the commensal species N. lactamica and N. cinerea. The guanine/cytosine content, lower than the chromosome, suggests acquisition by horizontal gene transfer and subsequent limited evolution to generate three well-conserved alleles. NadA has a predicted molecular structure strikingly similar to a novel class of adhesins (YadA and UspA2), forms high molecular weight oligomers, and binds to epithelial cells in vitro supporting the hypothesis that NadA is important for host cell interaction. NadA induces strong bactericidal antibodies and is protective in the infant rat model suggesting that this protein may represent a novel antigen for a vaccine able to control meningococcal disease caused by three hypervirulent lineages.


Asunto(s)
Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Alelos , Secuencia de Aminoácidos , Animales , Afinidad de Anticuerpos , Especificidad de Anticuerpos , Antígenos de Superficie/química , Antígenos de Superficie/metabolismo , Composición de Base , Secuencia de Bases , Western Blotting , Secuencia Conservada/genética , Evolución Molecular , Citometría de Flujo , Transferencia de Gen Horizontal/genética , Humanos , Sueros Inmunes/inmunología , Meningitis Meningocócica/inmunología , Meningitis Meningocócica/microbiología , Meningitis Meningocócica/prevención & control , Ratones , Datos de Secuencia Molecular , Neisseria meningitidis/genética , Neisseria meningitidis/crecimiento & desarrollo , Neisseria meningitidis/patogenicidad , Ratas
8.
J Exp Med ; 197(6): 789-99, 2003 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-12642606

RESUMEN

Sepsis and meningitis caused by serogroup B meningococcus are devastating diseases of infants and young adults, which cannot yet be prevented by vaccination. By genome mining, we discovered GNA1870, a new surface-exposed lipoprotein of Neisseria meningitidis that induces high levels of bactericidal antibodies. The antigen is expressed by all strains of N. meningitidis tested. Sequencing of the gene in 71 strains representative of the genetic and geographic diversity of the N. meningitidis population, showed that the protein can be divided into three variants. Conservation within each variant ranges between 91.6 to 100%, while between the variants the conservation can be as low as 62.8%. The level of expression varies between strains, which can be classified as high, intermediate, and low expressors. Antibodies against a recombinant form of the protein elicit complement-mediated killing of the strains that carry the same variant and induce passive protection in the infant rat model. Bactericidal titers are highest against those strains expressing high yields of the protein; however, even the very low expressors are efficiently killed. The novel antigen is a top candidate for the development of a new vaccine against meningococcus.


Asunto(s)
Antígenos Bacterianos/inmunología , Lipoproteínas/inmunología , Neisseria meningitidis/inmunología , Isoformas de Proteínas/inmunología , Vacunación , Adulto , Secuencia de Aminoácidos , Animales , Antígenos Bacterianos/clasificación , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Secuencia de Bases , Femenino , Genes Bacterianos , Humanos , Lactante , Lipoproteínas/genética , Lipoproteínas/metabolismo , Ratones , Datos de Secuencia Molecular , Neisseria meningitidis/metabolismo , Filogenia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
9.
Cell Microbiol ; 11(7): 1044-63, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19290916

RESUMEN

The Oca (Oligomeric coiled-coil adhesin) family is a subgroup of the bacterial trimeric autotransporter adhesins, which includes structurally related proteins, such as YadA of Yersinia enterocolitica and NadA of Neisseria meningitidis. In this study, we searched in silico for novel members of this family in bacterial genomes and identified HadA (Haemophilus adhesin A), a trimeric autotransporter expressed only by Haemophilus influenzae biogroup aegyptius causing Brazilian purpuric fever (BPF), a fulminant septicemic disease of children. By comparative genomics and sequence analysis we predicted that the hadA gene is harboured on a mobile genetic element unique to BPF isolates. Biological analysis of HadA in the native background was limited because this organism is not amenable to genetic manipulation. Alternatively, we demonstrated that expression of HadA confers to a non-invasive Escherichia coli strain the ability to adhere to human cells and to extracellular matrix proteins and to induce in vitro bacterial aggregation and microcolony formation. Intriguingly, HadA is predicted to lack the typical N-terminal head domain of Oca proteins generally associated with cellular receptor binding. We propose here a structural model of the HadA coiled-coil stalk and show that the N-terminal region is still responsible of the binding activity and a KGD motif plays a role. Interestingly, HadA promotes bacterial entry into mammalian cells. Our results show a cytoskeleton re-arrangement and an involvement of clathrin in the HadA-mediated internalization. These data give new insights on the structure-function relationship of oligomeric coiled-coil adhesins and suggest a potential role of this protein in the pathogenesis of BPF.


Asunto(s)
Adhesinas Bacterianas/fisiología , Adhesión Bacteriana , Proteínas Bacterianas/fisiología , Haemophilus influenzae/patogenicidad , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Línea Celular , Biología Computacional , ADN Bacteriano/química , ADN Bacteriano/genética , Genómica , Haemophilus influenzae/genética , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Cuaternaria de Proteína , Análisis de Secuencia de ADN , Homología de Secuencia
10.
Vaccine ; 38(47): 7542-7550, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33036804

RESUMEN

BACKGROUND: The multicomponent meningococcal serogroup B vaccine (4CMenB) is currently indicated for active immunization against invasive meningococcal disease caused by Neisseria meningitidis serogroup B (MenB). However, genes encoding the 4CMenB antigens are also variably present and expressed in strains belonging to other meningococcal serogroups. In this study, we evaluated the ability of antibodies raised by 4CMenB immunisation to induce complement-mediated bactericidal killing of non-MenB strains. METHODS: A total of 227 invasive non-MenB disease isolates were collected between 1 July 2007 and 30 June 2008 from England and Wales, France, and Germany; 41 isolates were collected during 2012 from Brazil. The isolates were subjected to genotypic analyses. A subset of 147 isolates (MenC, MenW and MenY) representative of the meningococcal genetic diversity of the total sample were tested in the human complement serum bactericidal antibody assay (hSBA) using sera from infants immunised with 4CMenB. RESULTS: Serogroup and clonal complex repertoires of non-MenB isolates were different for each country. For the European panel, MenC, MenW and MenY isolates belonged mainly to ST-11, ST-22 and ST-23 complexes, respectively. For the Brazilian panel, most MenC and MenW isolates belonged to the ST-103 and ST-11 complexes, respectively, and most MenY isolates were not assigned to clonal complexes. Of the 147 non-MenB isolates, 109 were killed in hSBA, resulting in an overall coverage of 74%. CONCLUSION: This is the first study in which 147 non-MenB serogroup isolates have been analysed in hSBA to evaluate the potential of a MenB vaccine to cover strains belonging to other serogroups. These data demonstrate that antibodies raised by 4CMenB are able to induce bactericidal killing of 109 non-MenB isolates, representative of non-MenB genetic and geographic diversity. These findings support previous evidence that 4CMenB immunisation can provide cross-protection against non-MenB strains in infants, which represents an added benefit of 4CMenB vaccination.


Asunto(s)
Infecciones Meningocócicas , Vacunas Meningococicas , Neisseria meningitidis Serogrupo B , Antígenos Bacterianos/genética , Brasil , Inglaterra , Francia , Alemania , Humanos , Lactante , Infecciones Meningocócicas/prevención & control , Neisseria meningitidis Serogrupo B/genética , Serogrupo , Vacunación , Gales
11.
J Clin Microbiol ; 47(11): 3577-85, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19759227

RESUMEN

Highly effective glycoconjugate vaccines exist against four of the five major pathogenic groups of meningococci: A, C, W-135, and Y. An equivalent vaccine against group B meningococci (menB) has remained elusive due to the poorly immunogenic capsular polysaccharide. A promising alternative, the investigational recombinant menB (rMenB)- outer membrane vesicle (OMV) vaccine, contains fHBP, NHBA (previously GNA2132), NadA, and outer membrane vesicles (OMVs) from the New Zealand MeNZB vaccine. MenB currently accounts for 90% of meningococcal disease in England and Wales, where the multilocus sequence type (ST) 269 (ST269) clonal complex (cc269) has recently expanded to account for a third of menB cases. To assess the potential cc269 coverage of the rMenB-OMV vaccine, English and Welsh cc269 isolates from the past decade were genetically characterized with respect to fHBP, NHBA, and NadA. All of the isolates harbored fHbp and nhba alleles, while 98% of the cc269 isolates were devoid of nadA. Subvariant profiling of fHbp, nhba, and porA against STs revealed the presence of two broadly distinct and well-defined clusters of isolates, centered around ST269 and ST275, respectively. An additional molecular marker, insertion sequence IS1301, was found to be present in 100% and <2% of isolates of the respective clusters. On the basis of the genetic data, the potential rMenB-OMV coverage of cc269 in England and Wales is high (up to 100%) within both clusters. Expression studies and serum bactericidal antibody assays will serve to enhance predictions of coverage and will augment ongoing studies regarding the significance of IS1301 within the ST269 cluster.


Asunto(s)
Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Elementos Transponibles de ADN , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/microbiología , Neisseria meningitidis/clasificación , Neisseria meningitidis/aislamiento & purificación , Análisis por Conglomerados , Dermatoglifia del ADN , Inglaterra/epidemiología , Genotipo , Humanos , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/inmunología , Epidemiología Molecular , Datos de Secuencia Molecular , Neisseria meningitidis/genética , Neisseria meningitidis/inmunología , Análisis de Secuencia de ADN , Homología de Secuencia , Gales/epidemiología
12.
J Infect ; 75(6): 511-520, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28987549

RESUMEN

The analysis of the potential impact of the meningococcal vaccines in asymptomatic carriers has become one of the key aspects in the evaluation of new vaccines and of their impact on disease control. An important step in this direction is provided by the analysis of the sequence variability and surface-exposure of the 4CMenB (Bexsero®) vaccine antigens, as well as the cross-reactivity of vaccine induced antibodies, in isolates from healthy carriers. The Spanish Reference Laboratory, in collaboration with the University Hospital Marqués de Valdecilla in Santander (Spain), carried out a meningococcal carrier survey between May 2010 and April 2012 (population aged 4 to 19 years). The present study was done on 60 meningococcal carrier strains representative of the overall strain panel obtained and compared to invasive strains isolated in Spain in the same time. We found quantifiable levels of fHbp and NHBA expression and immunologic cross-reactivity in 10% and 75% of analyzed carrier strains, respectively, so the potential impact of the 4CMenB vaccine on Spanish asymptomatic carrier strains is expected to be mediated by the NHBA antigen.


Asunto(s)
Portador Sano/inmunología , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Orofaringe/microbiología , Adolescente , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Portador Sano/microbiología , Niño , Preescolar , Reacciones Cruzadas , Genotipo , Humanos , Infecciones Meningocócicas/microbiología , Vacunas Meningococicas/administración & dosificación , Vacunas Meningococicas/genética , Neisseria meningitidis/aislamiento & purificación , Prevalencia , Serogrupo , España , Encuestas y Cuestionarios
13.
PLoS One ; 11(3): e0150721, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26950303

RESUMEN

BACKGROUND: A novel meningococcal multicomponent vaccine, 4CMenB (Bexsero®), has been approved in Europe, Canada, Australia and US. The potential impact of 4CMenB on strain coverage is being estimated by using Meningococcal Antigen Typing System (MATS), an ELISA assay which measures vaccine antigen expression and diversity in each strain. Here we show the genetic characterization and the 4CMenB potential coverage of Spanish invasive strains (collected during one epidemiological year) compared to other European countries and discuss the potential reasons for the lower estimate of coverage in Spain. MATERIAL AND METHODS: A panel of 300 strains, a representative sample of all serogroup B Neisseria meningitidis notified cases in Spain from 2009 to 2010, was characterized by multilocus sequence typing (MLST) and FetA variable region determination. 4CMenB vaccine antigens, PorA, factor H binding protein (fHbp), Neisseria Heparin Binding Antigen (NHBA) and Neisserial adhesin A (NadA) were molecularly typed by sequencing. PorA coverage was assigned to strain with VR2 = 4. The levels of expression and cross-reactivity of fHbp, NHBA and NadA were analyzed using MATS ELISA. FINDINGS: Global estimated strain coverage by MATS was 68.67% (95% CI: 47.77-84.59%), with 51.33%, 15.33% and 2% of strains covered by one, two and three vaccine antigens, respectively. The predicted strain coverage by individual antigens was: 42% NHBA, 36.33% fHbp, 8.33% PorA and 1.33% NadA. Coverage within the most prevalent clonal complexes (cc) was 70.37% for cc 269, 30.19% for cc 213 and 95.83% for cc 32. CONCLUSIONS: Clonal complexes (cc) distribution accounts for variations in strain coverage, so that country-by-country investigations of strain coverage and cc prevalence are important. Because the cc distribution could also vary over time, which in turn could lead to changes in strain coverage, continuous detailed surveillance and monitoring of vaccine antigens expression is needed in those countries where the multicomponent vaccine is introduced. This is really important in countries like Spain where most of the strains are predicted to be covered by only one vaccine antigen and the chance for escape mutants to emerge with vaccine use is higher. Based on the observed data, cc213 should receive special attention as it is associated with low predicted strain coverage, and has recently emerged in Spain.


Asunto(s)
Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Antígenos Bacterianos/inmunología , Humanos , Tipificación Molecular , Neisseria meningitidis/clasificación , Neisseria meningitidis/genética , Neisseria meningitidis/aislamiento & purificación , España , Especificidad de la Especie
14.
Expert Rev Vaccines ; 14(5): 713-36, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25603916

RESUMEN

Strains of Neisseria meningitidis serogroup B (MenB) causing invasive meningococcal disease are genetically diverse; however, only a small number of hyperinvasive lineages (CC32, CC41/44, CC269 and CC162) have dominated during the global spread over the past 50 years. Since the mid-1970s, major outbreaks and hyperendemic disease have been reported in Norway, Cuba, France, Canada, New Zealand (and elsewhere), most recently in the USA. We characterized the epidemiology of these MenB outbreaks and their associated clonal complexes and retrospectively assessed the potential coverage offered by the 4CMenB vaccine, a four-component vaccine developed to help confer protection against a broad range of meningococcal B strains causing disease. Of 21 isolates from four clonal complexes evaluated using both human Serum Bactericidal Assay and the Meningococcal Antigen Testing System, coverage ranged from 67 to 100%. 4CMenB shows good potential as a candidate vaccine to be used in the control of new MenB outbreaks globally.


Asunto(s)
Brotes de Enfermedades , Meningitis Meningocócica/epidemiología , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Neisseria meningitidis Serogrupo B/aislamiento & purificación , Vacunación/historia , Anticuerpos Antibacterianos/sangre , Actividad Bactericida de la Sangre , Salud Global , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Meningitis Meningocócica/microbiología , Vacunas Meningococicas/administración & dosificación , Vacunación/métodos , Vacunación/tendencias
15.
Vaccine ; 32(23): 2722-31, 2014 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-24631075

RESUMEN

Surface-expressed protein antigens such as factor H-binding protein (fHbp), Neisserial adhesin A (NadA), Neisserial heparin-binding antigen (NHBA) and Porin protein A (PorA); all express sequence variability that can affect their function as protective immunogens when used in meningococcal serogroup B vaccines like the recently-approved 4CMenB (Bexsero(®)). We assessed the sequence variation of genes coding for these proteins and two additional proteins ("fusion partners" to fHbp and NHBA) in pathogenic isolates from a recent low incidence period (endemic situation; 2005-2006) in Norway. Findings among strains from this panel were contrasted to what was found among isolates from a historic outbreak (epidemic situation; 1985-1990). Multilocus sequence typing revealed 14 clonal complexes (cc) among the 66 endemic strains, while cc32 vastly predominated in the 38-strain epidemic panel. Serogroup B isolates accounted for 50/66 among endemic strains and 28/38 among epidemic strains. Potential strain-coverage ("sequence match") for the 4CMenB vaccine was identified among the majority (>70%) of the endemic serogroup B isolates and all of the epidemic serogroup B isolates evaluated. Further information about the degree of expression, surface availability and the true cross-reactivity for the vaccine antigens will be needed to fully characterize the clinical strain-coverage of 4CMenB in various geographic and epidemiological situations.


Asunto(s)
Adhesinas Bacterianas/genética , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/genética , Neisseria meningitidis Serogrupo B/clasificación , Adhesinas Bacterianas/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Técnicas de Tipificación Bacteriana , Epidemias , Técnicas de Genotipaje , Humanos , Tipificación de Secuencias Multilocus , Neisseria meningitidis Serogrupo B/genética , Noruega , Filogenia , Porinas/genética , Porinas/inmunología
16.
Clin Vaccine Immunol ; 21(7): 966-71, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24807056

RESUMEN

Neisseria adhesin A (NadA), involved in the adhesion and invasion of Neisseria meningitidis into host tissues, is one of the major components of Bexsero, a novel multicomponent vaccine licensed for protection against meningococcal serogroup B in Europe, Australia, and Canada. NadA has been identified in approximately 30% of clinical isolates and in a much lower proportion of carrier isolates. Three protein variants were originally identified in invasive meningococci and named NadA-1, NadA-2, and NadA-3, whereas most carrier isolates either lacked the gene or harbored a different variant, NadA-4. Further analysis of isolates belonging to the sequence type 213 (ST-213) clonal complex identified NadA-5, which was structurally similar to NadA-4, but more distantly related to NadA-1, -2, and -3. At the time of this writing, more than 89 distinct nadA allele sequences and 43 distinct peptides have been described. Here, we present a revised nomenclature system, taking into account the complete data set, which is compatible with previous classification schemes and is expandable. The main features of this new scheme include (i) the grouping of the previously named NadA-2 and NadA-3 variants into a single NadA-2/3 variant, (ii) the grouping of the previously assigned NadA-4 and NadA-5 variants into a single NadA-4/5 variant, (iii) the introduction of an additional variant (NadA-6), and (iv) the classification of the variants into two main groups, named groups I and II. To facilitate querying of the sequences and submission of new allele sequences, the nucleotide and amino acid sequences are available at http://pubmlst.org/neisseria/NadA/.


Asunto(s)
Adhesinas Bacterianas/genética , Adhesinas Bacterianas/inmunología , Meningitis Meningocócica/inmunología , Vacunas Meningococicas/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Adhesinas Bacterianas/clasificación , Secuencia de Aminoácidos , Antígenos Bacterianos/inmunología , Adhesión Bacteriana/genética , Secuencia de Bases , Variación Genética , Humanos , Meningitis Meningocócica/prevención & control , Datos de Secuencia Molecular , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/patogenicidad , Análisis de Secuencia de ADN
17.
PLoS One ; 8(5): e65043, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23717687

RESUMEN

Studies of meningococcal evolution and genetic population structure, including the long-term stability of non-random associations between variants of surface proteins, are essential for vaccine development. We analyzed the sequence variability of factor H-binding protein (fHbp), Neisserial Heparin-Binding Antigen (NHBA) and Neisseria adhesin A (NadA), three major antigens in the multicomponent meningococcal serogroup B vaccine 4CMenB. A panel of invasive isolates collected in the Netherlands over a period of 50 years was used. To our knowledge, this strain collection covers the longest time period of any collection available worldwide. Long-term persistence of several antigen sub/variants and of non-overlapping antigen sub/variant combinations was observed. Our data suggest that certain antigen sub/variants including those used in 4CMenB are conserved over time and promoted by selection.


Asunto(s)
Adhesinas Bacterianas/genética , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Variación Genética , Neisseria meningitidis Serogrupo B/genética , Adhesinas Bacterianas/química , Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/química , Evolución Molecular , Tipificación de Secuencias Multilocus , Neisseria meningitidis Serogrupo B/clasificación , Países Bajos , Filogenia , Factores de Tiempo
18.
Lancet Infect Dis ; 13(5): 416-25, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23414709

RESUMEN

BACKGROUND: A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe. METHODS: We assessed invasive MenB strains isolated mainly in the most recent full epidemiological year in England and Wales, France, Germany, Italy, and Norway. Meningococcal antigen typing system (MATS) results were linked to multilocus sequence typing and antigen sequence data. To investigate whether generalisation of coverage applied to the rest of Europe, we also assessed isolates from the Czech Republic and Spain. FINDINGS: 1052 strains collected from July, 2007, to June, 2008, were assessed from England and Wales, France, Germany, Italy, and Norway. All MenB strains contained at least one gene encoding a major antigen in the vaccine. MATS predicted that 78% of all MenB strains would be killed by postvaccination sera (95% CI 63-90, range of point estimates 73-87% in individual country panels). Half of all strains and 64% of covered strains could be targeted by bactericidal antibodies against more than one vaccine antigen. Results for the 108 isolates from the Czech Republic and 300 from Spain were consistent with those for the other countries. INTERPRETATION: MATS analysis showed that a multicomponent vaccine could protect against a substantial proportion of invasive MenB strains isolated in Europe. Monitoring of antigen expression, however, will be needed in the future. FUNDING: Novartis Vaccines and Diagnostics.


Asunto(s)
Genes Bacterianos , Meningitis Meningocócica/prevención & control , Vacunas Meningococicas/uso terapéutico , Neisseria meningitidis Serogrupo B/aislamiento & purificación , Adhesinas Bacterianas/análisis , Antígenos Bacterianos/genética , Técnicas de Tipificación Bacteriana/métodos , ADN Bacteriano/análisis , Ensayo de Inmunoadsorción Enzimática , Europa (Continente)/epidemiología , Genotipo , Geografía , Humanos , Meningitis Meningocócica/epidemiología , Meningitis Meningocócica/microbiología , Tipificación de Secuencias Multilocus/métodos , Neisseria meningitidis Serogrupo B/clasificación , Neisseria meningitidis Serogrupo B/genética , Neisseria meningitidis Serogrupo B/patogenicidad , Vigilancia de la Población/métodos , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados
19.
Vaccine ; 29(5): 1072-81, 2011 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-21130753

RESUMEN

Factor H binding protein (fHbp), one of the main antigens of new vaccines against serogroup B meningococcus, varies in amino acid sequence and level of expression in different clinical isolates. To evaluate the contribution of amino acid sequence variability to vaccine coverage, we constructed a strain that is susceptible to bactericidal killing only by anti-fHbp antibodies and engineered it to express equal levels of 10 different fHbp sub-variants from a constitutive promoter. Testing of these isogenic strains showed that sera from mice or adult volunteers vaccinated with fHbp variant 1.1 were bactericidal against all sub-variants 1 sequences, however the titer against the most distant sequences were several times lower. Sera from vaccinated infants were more susceptible to amino acid variations and they had lower or no bactericidal activity against the distant sub-variants 1 sequences in comparison with sera from adults given the same vaccines. The low coverage provided by fHbp could be overcome using a multicomponent vaccine. We conclude that fHbp is a very important antigen that induces bactericidal antibodies in animals, adults and infants. However, given its high variability of sequence and expression level, it is unlikely that fHbp alone can provide good protection in infants against the distant amino acid sequence variants and therefore multicomponent vaccines inducing protective immunity also against other antigens are more likely to induce a broad protective immunity in all age groups.


Asunto(s)
Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Actividad Bactericida de la Sangre/inmunología , Sueros Inmunes/inmunología , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Polimorfismo Genético , Adulto , Animales , Femenino , Humanos , Lactante , Ratones , Viabilidad Microbiana , Neisseria meningitidis/genética
20.
Vaccine ; 29(29-30): 4739-44, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21571026

RESUMEN

Neisseria meningitidis (Nm) serogroups B, C and Y are the major causes of meningococcal diseases in the United States. NmB accounts for ∼1/3 of the disease but no licensed vaccine is yet available. Two candidate vaccines are being developed specifically to target NmB, but may also provide protection against other serogroups. To assess the potential impact of these vaccines on NmB and other serogroups causing disease in the US, we determined the prevalence, genetic diversity and epidemiological characteristics of three candidate antigen genes in Nm isolates collected through Active Bacterial Core surveillance (ABCs), a population-based active surveillance program. fHbp was detected in all NmB, NmY and NmW135 isolates. Eleven NmC isolates contain fHbp with a single base-pair deletion creating a frame shift in the C-terminal region. Among NmB, 59% were FHbp subfamily/variant B/v1 and 41% A/v2-3. Among NmC and NmY, 39% and 3% were B/v1, respectively. nadA was detected in 39% of NmB, 61% of NmC and 4% of NmY. Among isolates tested, nhbA was present in all NmB and 96% of non-B. For the subset of strains sequenced for NadA and NhbA, pairwise identity was greater than 93% and 78%, respectively. The proportion of FHbp subfamily/variant was different between ABCs site and year, but no linear temporal trend was observed. Although assessment of the vaccine coverage also requires understanding of the antigen expression and the ability to induce bactericidal activity, our finding that all isolates contain one or more antigen genes suggests these candidate vaccines may protect against multiple Nm serogroups.


Asunto(s)
Antígenos Bacterianos/genética , Variación Genética , Infecciones Meningocócicas/epidemiología , Infecciones Meningocócicas/microbiología , Neisseria meningitidis/clasificación , Neisseria meningitidis/genética , Adhesinas Bacterianas/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Proteínas Bacterianas/genética , Niño , Preescolar , Femenino , Mutación del Sistema de Lectura , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Neisseria meningitidis/aislamiento & purificación , Prevalencia , Eliminación de Secuencia , Estados Unidos/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA