Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37628993

RESUMEN

Inotodiol, a lanostane-type triterpenoid, and many phytochemicals from Chaga mushrooms have been investigated for various allergic diseases. However, the anti-aging and anti-inflammatory activities of inotodiol under different types of oxidative stress and the impact of inotodiol on collagen and hyaluronan synthesis have not been sufficiently studied. Lanostane triterpenoids-rich concentrate, which contained 10% inotodiol as major (inotodiol concentrate), was prepared from Chaga and compared with pure inotodiol in terms of anti-inflammatory activities on a human keratinocyte cell line, HaCaT cells, under various stimulations such as stimulation with ultraviolet (UV) B or tumor necrosis factor (TNF)-α. In stimulation with TNF-α, interleukin (IL)-1ß, IL-6, and IL-8 genes were significantly repressed by 0.44~4.0 µg/mL of pure inotodiol. UVB irradiation induced the overexpression of pro-inflammatory cytokines, but those genes were significantly suppressed by pure inotodiol or inotodiol concentrate. Moreover, pure inotodiol/inotodiol concentrate could also modulate the synthesis of collagen and hyaluronic acid by controlling COL1A2 and HAS2/3 expression, which implies a crucial role for pure inotodiol/inotodiol concentrate in the prevention of skin aging. These results illuminate the anti-inflammatory and anti-aging effects of pure inotodiol/inotodiol concentrate, and it is highly conceivable that pure inotodiol and inotodiol concentrate could be promising natural bioactive substances to be incorporated in therapeutic and beautifying applications.


Asunto(s)
Células HaCaT , Triterpenos , Humanos , Triterpenos/farmacología , Queratinocitos , Estrés Oxidativo , Esteroides
2.
Molecules ; 27(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35897881

RESUMEN

Chaga mushroom (Inonotus obliquus) comprises polyphenolic compounds, triterpenoids, polysaccharides, and sterols. Among the triterpenoid components, inotodiol has been broadly examined because of its various biological activities. The purpose of this study is to examine inotodiol from a safety point of view and to present the potential possibilities of inotodiol for medical usage. From chaga mushroom extract, crude inotodiol (INO20) and pure inotodiol (INO95) were produced. Mice were treated with either INO20 or INO95 once daily using oral administration for repeated dose toxicity evaluation. Serum biochemistry parameters were analyzed, and the level of pro-inflammatory cytokines in the serum was quantified. In parallel, the effect of inotodiol on food allergic symptoms was investigated. Repeated administration of inotodiol did not show any mortality or abnormalities in organs. In food allergy studies, the symptoms of diarrhea were ameliorated by administration with INO95 and INO20. Furthermore, the level of MCPT-1 decreased by treatment with inotodiol. In this study, we demonstrated for the first time that inotodiol does not cause any detrimental effect by showing anti-allergic activities in vivo by inhibiting mast cell function. Our data highlight the potential to use inotodiol as an immune modulator for diseases related to inflammation.


Asunto(s)
Lanosterol , Triterpenos , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Inonotus , Lanosterol/análogos & derivados , Lanosterol/farmacología , Ratones
3.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36830005

RESUMEN

Inotodiol, an oxysterol found only in Chaga mushroom, has received attention from the pharmaceutical industry due to its strong antioxidant and anti-allergic activities. However, the production of inotodiol is still challenging, and its fundamental properties have yet to be investigated. This study aims to develop an efficient method to produce high-purity inotodiol from Chaga mushroom. Then, pure inotodiol was used to assess its physicochemical properties and biological activities. By optimizing the solvent used for extraction and purification, a new method to produce inotodiol was developed with high purity (>97%) and purification yield (33.6%). Inotodiol exhibited a melting point (192.06 °C) much higher than lanosterol and cholesterol. However, the solubility of inotodiol in organic solvents was notably lower than those of the other two sterols. The difference in the hydroxyl group at C-22 of inotodiol has shown the distinctive physicochemical properties of inotodiol compared with cholesterol and lanosterol. Based on those findings, a nonionic surfactant-based delivery system for inotodiol was developed to improve its bioavailability. The inotodiol microemulsion prepared with 1-2% Tween-80 exhibited homogenous droplets with an acceptable diameter (354 to 217 nm) and encapsulation efficiency (85.6-86.9%). The pharmacokinetic analysis of inotodiol microemulsion in oral administration of 4.5 mg/kg exhibited AUC0-24h = 341.81 (ng·h/mL), and Cmax = 88.05 (ng/mL). Notably, when the dose increased from 4.5 to 8.0 mg/kg, the bioavailability of inotodiol decreased from 41.32% to 33.28%. In a mouse model of sepsis, the serum level of interleukin-6 significantly decreased, and the rectal temperature of mice was recovered in the inotodiol emulsion group, indicating that inotodiol microemulsion is an effective oral delivery method. These results could provide valuable information for applying inotodiol in functional food, cosmetic, and pharmaceutical industries.

4.
Carbohydr Polym ; 284: 119175, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35287897

RESUMEN

The one-step synthesis of glycogen-type polysaccharides from maltooctaose (G8) was accomplished based on the new findings of the catalytic mechanism of glycogen branching enzymes (GBEs) from Vibrio vulnificus, Deinococcus geothermalis, and Escherichia coli. GBEs from D. geothermalis and E. coli used maltononaose and maltotridecaose as the minimum, respectively, while V. vulnificus GBE (VvGBE) catalyzed the surprisingly small substrate, G8, into polysaccharides. Intriguingly, all three GBEs catalyzed α-1,4-transglycosylation at the early reaction stage of transglycosylation. VvGBE successfully converted the smallest substrate (G8) into two highly branched polysaccharides (HBP), in which the big polysaccharide (1.49 × 105 Da) exhibited structural properties similar to glycogen. Both HBPs had similar side chain distribution with a very short average degree of polymerization compared with mussel glycogen. As a molecular biology reagent, these nucleotide-free HBPs significantly increased the mRNA extraction efficiency of mammalian cells. Our results provide a new approach to the synthesis of novel polysaccharides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA