Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Chem Ecol ; 46(7): 619-630, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32577987

RESUMEN

Secondary metabolites commonly play important physiological roles in plants and can be modified quantitatively and qualitatively by exposure to biotic and abiotic interactions. Plant growth promoting rhizobacteria (PGPR) and herbivory induce systemic resistance. In the present study, we analyzed the induction of secondary metabolites in peppermint plants in response to chewing insect herbivory on PGPR-inoculated Mentha piperita plants. The secondary metabolites of M. piperita plants were increased when plants were inoculated with PGPR and also exposed to caterpillar herbivory. It was found that the total essential oil yield in inoculated plants with insect damage was ~2.6-fold higher than in controls. The yield was similar to that of plants either damaged by insects or inoculated, indicating that there was no synergism. The same trend was observed for phenolic compounds. In contrast, VOC emissions were significantly higher in plants infested by insects, independent of whether they were inoculated. Insect damaged plants had 5.5 times higher monoterpene emissions than control plants, and ~ 2-fold higher emissions than on PGPR-inoculated plants without insects. To gain a better understanding of how herbivory on PGPR-inoculated plants can cause an increase in secondary metabolites of peppermint, we examined changes in plant defense hormones in inoculated plants after herbivory. We found that the combination of both treatments increased the endogenous jasmonic and salicylic acid levels to the same extent as in plants only inoculated or only insect-damaged. Because different interactions can alter the phytochemistry of plants such as M. piperita, this topic is both ecologically and economically relevant.


Asunto(s)
Bacillus amyloliquefaciens/fisiología , Herbivoria , Mentha piperita/metabolismo , Mariposas Nocturnas/fisiología , Pseudomonas putida/fisiología , Animales , Larva , Mentha piperita/microbiología , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Metabolismo Secundario , Microbiología del Suelo
2.
Int J Mol Sci ; 21(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861733

RESUMEN

The effects of plant inoculation with plant growth-promoting rhizobacteria (PGPR) and those resulting from the exogenous application of salicylic acid (SA) or methyl jasmonte (MeJA) on total phenolic content (TPC) and monoterpenes in Mentha x piperita plants were investigated. Although the PGPR inoculation response has been studied for many plant species, the combination of PGPR and exogenous phytohormones has not been investigated in aromatic plant species. The exogenous application of SA produced an increase in TPC that, in general, was of a similar level when applied alone as when combined with PGPR. This increase in TPC was correlated with an increase in the activity of the enzyme phenylalanine ammonia lyase (PAL). Also, the application of MeJA at different concentrations in combination with inoculation with PGPR produced an increase in TPC, which was more relevant at 4 mM, with a synergism effect being observed. With respect to the main monoterpene concentrations present in peppermint essential oil (EO), it was observed that SA or MeJA application produced a significant increase similar to that of the combination with rhizobacteria. However, when plants were exposed to 2 mM MeJA and inoculated, an important increase was produced in the concentration on menthol, pulegone, linalool, limonene, and menthone concentrations. Rhizobacteria inoculation, the treatment with SA and MeJA, and the combination of both were found to affect the amount of the main monoterpenes present in the EO of M. piperita. For this reason, the expressions of genes related to the biosynthesis of monoterpene were evaluated, with this expression being positively affected by MeJA application and PGPR inoculation, but was not modified by SA application. Our results demonstrate that MeJA or SA application combined with inoculation with PGPR constitutes an advantageous management practice for improving the production of secondary metabolites from M. piperita.


Asunto(s)
Mentha piperita/crecimiento & desarrollo , Monoterpenos/análisis , Fenoles/análisis , Reguladores del Crecimiento de las Plantas/farmacología , Rhizobiaceae/fisiología , Acetatos/farmacología , Ciclopentanos/farmacología , Sinergismo Farmacológico , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mentha piperita/química , Mentha piperita/microbiología , Oxilipinas/farmacología , Fenilanina Amoníaco-Liasa/metabolismo , Extractos Vegetales/análisis , Proteínas de Plantas/metabolismo , Ácido Salicílico/farmacología , Metabolismo Secundario/efectos de los fármacos
3.
J Chem Ecol ; 41(2): 149-58, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25655927

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) generally exert their effects through enhancement of plant nutrient status and/or phytohormone production. The effects of PGPR on aromatic plant species are poorly known. We measured plant growth parameters, chlorophyll content, trichome density, stomatal density, and levels of secondary metabolites in peppermint (Mentha piperita) seedlings inoculated with PGPR strains Bacillus subtilis GB03, Pseudomonas fluorescens WCS417r, P. putida SJ04, or a combination of WCS417r + SJ04. The treated plants, in comparison with controls, showed increases in shoot biomass, root biomass, leaf area, node number, trichome density, and stomatal density, and marked qualitative and quantitative changes in monoterpene content. Improved knowledge of the factors that control or affect biosynthesis of secondary metabolites and monoterpene accumulation will lead to strategies for improved cultivation and productivity of aromatic plants and other agricultural crops without the use of chemical fertilizers or pesticides.


Asunto(s)
Bacillus subtilis/fisiología , Mentha piperita/microbiología , Pseudomonas fluorescens/fisiología , Pseudomonas putida/fisiología , Bacillus subtilis/genética , Mentha piperita/anatomía & histología , Mentha piperita/química , Raíces de Plantas/microbiología , Estomas de Plantas/anatomía & histología , Pseudomonas fluorescens/genética , Pseudomonas putida/genética , Tricomas/anatomía & histología
4.
Plants (Basel) ; 13(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611463

RESUMEN

Inoculation with rhizobacteria and feeding by herbivores, two types of abiotic stress, have been shown to increase the production of secondary metabolites in plants as part of the defense response. This study explored the simultaneous effects of inoculation with Bacillus amyloliquefaciens GB03 (a PGPR species) and herbivory by third-instar Spodoptera frugiperda larvae on essential oil (EO) yield and volatile organic compound (VOC) emissions in Ocimum basilicum plants. The density of glandular trichomes was also examined, given that they are linked to EO production and VOC emission. Herbivory increased EO content, but inoculation on its own did not. When combined, however, the two treatments led to a 10-fold rise in EO content with respect to non-inoculated plants. VOC emissions did not significantly differ between inoculated and non-inoculated plants, but they doubled in plants chewed by the larvae with respect to their undamaged counterparts. Interestingly, no changes were observed in VOC emissions when the treatments were tested together. In short, the two biotic stressors elicited differing plant defense responses, mainly when EO was concerned. PGPR did not stimulate EO production, while herbivory significantly enhanced it and increased VOC emissions. The combined treatment acted synergistically, and in this case, PGPR inoculation may have had a priming effect that amplified plant response to herbivory. Peltate trichome density was higher in inoculated plants, those damaged by larvae, and those subjected to the combination of both treatments. The findings highlight the intricate nature of plant defense mechanisms against various stressors and hint at a potential strategy to produce essential oil through the combined application of the two stressors tested here.

5.
Plants (Basel) ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39124180

RESUMEN

This study aimed to isolate and characterize Pseudomonas native strains from the rhizospheric soil of Minthostachys verticillata plants to evaluate their potential as plant growth-promoting rhizobacteria (PGPR). A total of 22 bacterial isolates were obtained and subjected to various biochemical tests, as well as assessments of plant growth-promoting traits such as phosphate solubilization, hydrogen cyanide production, biocontrol properties through antibiosis, and indole acetic production. Genotypic analysis via 16S rRNA gene sequencing and phylogenetic tree construction identified the strains, with one particular strain named SM 33 showing significant growth-promoting effects on M. verticillata seedlings. This strain, SM 33, showed high similarity to Stutzerimonas stutzeri based on 16S rRNA gene sequencing and notably increased both shoot fresh weight and root dry weight of the plants. These findings underscore the potential application of native Pseudomonas strains in enhancing plant growth and health, offering promising avenues for sustainable agricultural practices.

6.
Plants (Basel) ; 12(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37050113

RESUMEN

As salt stress has a negative impact on plant growth and crop yield, it is very important to identify and develop any available biotechnology which can improve the salt tolerance of plants. Inoculation with plant-growth-promoting rhizobacteria (PGPR) is a proven environmentally friendly biotechnological resource for increasing the salt stress tolerance of plants and has a potential in-field application. In addition, bacterial volatile organic compounds (mVOCs) are signal molecules that may have beneficial roles in the soil-plant-microbiome ecosystem. We investigated the effects of mVOCs emitted by Pseudomona putida SJ46 and SJ04 on Mentha piperita grown under different levels of NaCl stress by evaluating their growth-promoting potential and capacity to increase salt tolerance effects. Furthermore, we evaluated under control and salt stress conditions the biocontrol ability of VOCs emitted by both these strains to inhibit the growth of Alternaria alternata and Sclerotium rolfsii. The VOCs emitted by both strains under control conditions did not lead to an significant improvement in peppermint growth. However, under salt stress conditions (75 or 100 mM NaCl), an amelioration of its physiological status was observed, with this effect being greater at 100 mM NaCl. This led to an enhancement of the number of leaves and nodes and, increased the shoot fresh and root dry weight by approximately twice in relation to control stressed plants. Moreover, the VOCs released by the two bacteria grown in control or saline media showed a significant reduction in the mycelial growth of A. alternata. In contrast, S. rolfsii growth was reduced 40% by the mVOCs released only under control conditions, with no effects being observed under salt stress. We also explored the composition of the bacterial volatile profiles by means of a solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) analysis. From the headspace of SJ46, three VOCs were identified: n-octanol, decane and tetradecane. The emission of SJ04 had the same chromatographic profile, with the addition of two more compounds: 1-(N-phenyl carbamyl)-2-morpholino cyclohexene and tridecane. Only compounds that were not present in the headspace of the control groups were recorded. The salt stress conditions where the bacteria were grown did not qualitatively modify the mVOC emissions. Taken together, our results suggest that plant-associated rhizobacterial VOCs play a potentially important role in modulating plant salt tolerance and reducing fungal growth. Thus, biological resources represent novel tools for counteracting the deleterious effects of salt stress and have the potential to be exploited in sustainable agriculture. Nevertheless, future studies are necessary to investigate technological improvements for bacterial VOC application under greenhouse and open field conditions.

7.
Plants (Basel) ; 12(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38068694

RESUMEN

Salinity inhibits plant growth by affecting physiological processes, but soil microorganisms like plant growth-promoting rhizobacteria (PGPR) can alleviate abiotic stress and enhance crop productivity. However, it should be noted that rhizobacteria employ different approaches to deal with salt stress conditions and successfully colonize roots. The objective of this study was to investigate the effect of salt stress on bacterial survival mechanisms such as mobility, biofilm formation, and the autoaggregation capacity of three plant growth-promoting strains: Pseudomonas putida SJ04, Pseudomonas simiae WCS417r, and Bacillus amyloliquefaciens GB03. These strains were grown in diluted LB medium supplemented with 0, 100, 200, or 300 mM NaCl. Swimming and swarming mobility were evaluated in media supplemented with 0.3 and 0.5% agar, respectively. Biofilm formation capacity was quantified using the crystal violet method, and the autoaggregation capacity was measured spectrophotometrically. In addition, we evaluated in vitro the capacity of the strains to ameliorate the effects of saline stress in Mentha piperita. The study found that the GB03 strain exhibited enhanced swarming mobility when the salt concentration in the medium increased, resulting in a two-fold increase in the halo diameter at 300 mM. However, high concentrations of NaCl did not affect the swimming mobility. In contrast, swimming motility was reduced in WCS417r and SJ04 under salt stress. On the other hand, exposure to 300 mM NaCl resulted in a 180% increase in biofilm formation and a 30% rise in the percentage of autoaggregation in WCS417r. Conversely, the autoaggregation percentage of the strains SJ04 and GB03 remained unaffected by saline stress. However, for GB03, biofilm formation decreased by 80% at 300 mM. Simultaneously, inoculation with the three evaluated strains alleviated the detrimental effects of salinity on plant growth. Under 150 mM salt stress, all strains showed increased fresh weight, with GB03 and WCS417r improving by 40% and SJ04 exhibiting the most remarkable effect with a 70% rise compared to non-inoculated plants. Despite their different strategies for mitigating salt stress, the application of these strains presents a promising strategy for effectively mitigating the negative consequences of salt stress on plant cultivation.

8.
MethodsX ; 10: 102099, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926272

RESUMEN

Salinity is one of the causes that limit crop production. Plant Growth Promoting Rhizobacteria (PGPR) are beneficial soil bacteria that play a significant role in promoting plant growth. These microorganisms can produce their effect through the emission of Volatile Organic Compounds (VOCs). Most of the research to study the effects of microbial VOCs on plant growth has been carried out under controlled conditions using partitioned Petri dishes. In this article, we describe an alternative method that has the advantage of allowing long-term trials, being able to let the plant have a greater development in growth and height, without space limitation. In the proposed method, M. piperita were planted in glass jars containing Murashige and Skoog solid media, with a small glass vial containing Hoagland media inserted into the jar. This small vial was inoculated with the specified bacterium and served as the source of bacterial volatiles. This way plants were exposed to mVOCs without having any physical contact with the rhizobacteria.•The procedure allows studying the effect of microbial VOCs on plant growth.•It also allows longer trials, being able to let the plant develop more without space limitation.

9.
Pest Manag Sci ; 78(2): 778-784, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34708509

RESUMEN

BACKGROUND: Plant growth-promoting rhizobacteria (PGPR) has a significant role in plant-insect interaction. However, the extent of their impact on insects is still not well understood. This investigation was designed to evaluate the role of inoculation with Bacillus amyloliquefaciens GB03 on sweet basil (Ocimum basilucum L.) in the development and nutritional parameters of Spodoptera frugiperda. In addition, the feeding preferences on inoculated and non-inoculated plants were assessed. RESULTS: Spodoptera frugiperda larvae reared with inoculated sweet basil leaves had a strong negative effect on the development of the insect, resulting in lower larval and pupal weights, and a longer period for larval-adult development. Moreover, adult emergence was reduced, but the relative consumption rate (RCR) value was unaffected, thereby revealing no alteration of the palatability. Growth rate and nutritional indicators, such as the efficiency of conversion of ingested food (ECI) and the efficiency of conversion of digested food (ECD), were reduced in larvae reared from treated plants. In the choice test, larvae avoided feeding on inoculated leaves. CONCLUSION: The higher occurrence of secondary metabolites in inoculated plants could have been the reason for the reduction of the plant nutritional rate and also for the food selection, since it has been previously reported that GB03 inoculated sweet basil increased the essential oil yield. Therefore, PGPR inoculation could be used as a growth promoter, making it a promising candidate for plant protection programs against insects in aromatic plant production. © 2021 Society of Chemical Industry.


Asunto(s)
Ocimum basilicum , Aceites Volátiles , Animales , Valor Nutritivo , Hojas de la Planta , Spodoptera
10.
Biochem Mol Biol Educ ; 49(3): 483-491, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33301615

RESUMEN

Drought is a major environmental stress factor that affects the growth and development of plants. All plants have to maintain the reactive oxygen species within certain levels for normal cellular homeostasis by means of their antioxidant systems, which can be classified as enzymatic and non-enzymatic. Plants under drought stress generate an excess production of reactive oxygen species. At high concentrations, this can be detrimental by producing damage to the protein structures and inhibiting enzymes, as well as oxidizing macromolecules, which may eventually lead to cell death. There has been increasing attention paid to the antioxidant capacity of aromatic/medicinal plants, with a high antioxidant content having been reported in some plant extracts, such as in Mentha piperita (peppermint). Peppermint plants cultivated under drought stress also present high levels of phenolic compounds, peroxidase enzyme activity and lipid peroxidation of membranes. A simple and inexpensive laboratory class is proposed for teaching some mechanisms that plants have evolved to avoid reactive oxygen species damage. The series of lab experiments described is aimed at demonstrating the antioxidant status in aromatic plants subjected to drought stress, by measuring total phenolic compound content (non-enzymatic antioxidant compound), peroxidase activity (enzymatic antioxidant) and malondialdehyde, as convenient biomarkers for lipid peroxidation. The proposed class will be carried out by undergraduate students of the advanced biochemistry course, as part of our biology and agronomy studies. The experiment presented is intended to be used as a vehicle to emphasize the concepts that students have learned in their lectures. This lab exercise to be carried out by the students has dual goals: to apply a methodology only learned superficially on previous courses, and also to increase their understanding of how plants developed resistance mechanisms in order to tolerate drought stress.


Asunto(s)
Antioxidantes/análisis , Investigación Biomédica/educación , Sequías , Mentha piperita/metabolismo , Extractos Vegetales/análisis , Estrés Fisiológico , Humanos , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
J Basic Microbiol ; 50(3): 274-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20143354

RESUMEN

RSalpha sequencing is a valuable tool for identification of bacterial strains, and for evaluating the genetic structure of indigenous rhizobial populations. The purpose of this study was to evaluate, qualitatively, the presence or absence of RSalpha fragment in peanut-nodulating strains isolated from plants grown at four sites in central Argentina. RSalpha fragment was found in only three of 26 indigenous strains, and in one of three inoculant strains analyzed. In contrast to results from studies of other symbiotic nitrogen-fixing bacteria, such as soybean-nodulating strains, no correlation was found between generation time and presence of RSalpha sequence. Phylogenetic analysis of the 16S rRNA gene sequence grouped peanut-nodulating strains into two clusters, Bradyrhizobium japonicum vs. B. elkanii, and showed divergence among strains positive for RSalpha sequence. Our results confirm the genetic diversity previously reported for various peanut-nodulating rhizobial strains, and indicate that the RSalpha fragment is not applicable as a marker or tool for competition assays at the field or ecological level.


Asunto(s)
Arachis/microbiología , Bradyrhizobium/clasificación , Bradyrhizobium/aislamiento & purificación , Polimorfismo Genético , Nódulos de las Raíces de las Plantas/microbiología , Microbiología del Suelo , Argentina , Bradyrhizobium/genética , Análisis por Conglomerados , Elementos Transponibles de ADN , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Biochem Mol Biol Educ ; 47(4): 388-393, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30964236

RESUMEN

Rhizobacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria, and this can stimulate plant growth either indirectly or directly. Volatile organic compounds (VOCs) emitted by rhizobacteria have the capacity to promote plant growth as well as perform biocontrol of fungal pathogens. The microbial volatile organic compounds (mVOCs) are characterized by a low molecular weight and a high vapor pressure, which facilitate evaporation and diffusion at normal temperatures and at above-ground and below-ground pressures. mVOCs can travel far from the point of production through the atmosphere, porous soils and liquids, thereby making them ideal infochemicals for mediating interspecific interactions. However, knowledge about the biological and ecological roles of microbial VOCs is still limited compared with that of plant VOCs. Here, we describe a simple and inexpensive laboratory class aimed at biotechnology or soil microbiology students, which uses techniques to increase their understanding of the mechanisms of plant growth promoting rhizobacteria and also illustrate the effects of mVOCs emitted by rhizobacteria on plant growth promotion, as well as evaluating their potential as a biocontrol. The laboratory class is divided into two sessions: an initial 3-hour experimental session and a second 2-hour analytical one. The experimental session involves two separate experiments: one of which is dedicated to illustrating the effect of mVOCs on plant growth parameters, while the second explores the capacity of VOCs as a biocontrol. Also, the class provides students with an opportunity to perform useful assays, draw conclusions from their results, and discuss possible extensions of the study. © 2019 International Union of Biochemistry and Molecular Biology, 47(4):388-393, 2019.


Asunto(s)
Biotecnología/educación , Microbiología/educación , Ocimum basilicum/crecimiento & desarrollo , Ocimum basilicum/microbiología , Rhizobiaceae/química , Rhizobiaceae/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Humanos , Ocimum basilicum/metabolismo , Estudiantes
13.
Plant Physiol Biochem ; 141: 142-153, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31163341

RESUMEN

Plant growth promoting bacteria (PGPB) are agriculturally important soil bacteria that increase plant growth. We subjected peppermint to inoculation with three species of PGPB. After inoculation, the plants were sprayed with methyl jasmonate solution (MeJA) or SA (salicylic acid). Then, the plants were harvested and the plant growth parameters, trichome density, EO content and endogenous phytohormones were measured. Shoot fresh weight was reduced in plants inoculated and treated with MeJA whereas EO content varied depending on the MeJA concentration applied. Plants inoculated and treated with MeJA 2 mM showed the maximum increase in EO production, revealing a synergism between PGPB and MeJA. SA treatments also enhanced EO yield. The increased growth and EO production observed upon PGPB application were at least partly due to an increase in the JA and SA concentrations in the plant, as well as to an associated rise in the glandular trichome density.


Asunto(s)
Acetatos/farmacología , Ciclopentanos/química , Ciclopentanos/farmacología , Mentha piperita/química , Aceites Volátiles/química , Oxilipinas/química , Oxilipinas/farmacología , Ácido Salicílico/química , Tricomas/química , Bacillus subtilis , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mentha piperita/microbiología , Aceites Volátiles/aislamiento & purificación , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/química , Hojas de la Planta/química , Brotes de la Planta/química , Pseudomonas fluorescens , Pseudomonas putida
14.
Res Microbiol ; 157(9): 867-75, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16887339

RESUMEN

Rhizobia are non-spore-forming soil bacteria that fix atmospheric nitrogen into ammonia in a symbiosis with legume roots. However, in the absence of a legume host, rhizobia manage to survive and hence must have evolved strategies to adapt to diverse environmental conditions. The capacity to respond to variations in nutrient availability enables the persistence of rhizobial species in soil, and consequently improves their ability to colonize and to survive in the host plant. Rhizobia, like many other soil bacteria, persist in nature most likely in sessile communities known as biofilms, which are most often composed of multiple microbial species. We have been employing in vitro assays to study environmental parameters that might influence biofilm formation in the Medicago symbiont Sinorhizobium meliloti. These parameters include carbon source, amount of nitrate, phosphate, calcium and magnesium as well as the effects of osmolarity and pH. The microtiter plate assay facilitates the detection of subtle differences in rhizobial biofilms in response to these parameters, thereby providing insight into how environmental stress or nutritional status influences rhizobial survival. Nutrients such as sucrose, phosphate and calcium enhance biofilm formation as their concentrations increase, whereas extreme temperatures and pH negatively affect biofilm formation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Sinorhizobium meliloti/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Calcio/farmacología , Medios de Cultivo/farmacología , Relación Dosis-Respuesta a Droga , Concentración de Iones de Hidrógeno , Magnesio/farmacología , Microscopía Fluorescente , Nitratos/farmacología , Fosfatos/farmacología , Sinorhizobium meliloti/efectos de los fármacos , Cloruro de Sodio/farmacología , Sorbitol/farmacología , Sacarosa/farmacología , Temperatura
15.
Materials (Basel) ; 9(6)2016 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28773540

RESUMEN

Bacterial surface components and extracellular compounds, particularly flagella, lipopolysaccharides (LPSs), and exopolysaccharides (EPSs), in combination with environmental signals and quorum-sensing signals, play crucial roles in bacterial autoaggregation, biofilm development, survival, and host colonization. The nitrogen-fixing species Sinorhizobium meliloti (S. meliloti) produces two symbiosis-promoting EPSs: succinoglycan (or EPS I) and galactoglucan (or EPS II). Studies of the S.meliloti/alfalfa symbiosis model system have revealed numerous biological functions of EPSs, including host specificity, participation in early stages of host plant infection, signaling molecule during plant development, and (most importantly) protection from environmental stresses. We evaluated functions of EPSs in bacterial resistance to heavy metals and metalloids, which are known to affect various biological processes. Heavy metal resistance, biofilm production, and co-culture were tested in the context of previous studies by our group. A range of mercury (Hg II) and arsenic (As III) concentrations were applied to S. meliloti wild type strain and to mutant strains defective in EPS I and EPS II. The EPS production mutants were generally most sensitive to the metals. Our findings suggest that EPSs are necessary for the protection of bacteria from either Hg (II) or As (III) stress. Previous studies have described a pump in S. meliloti that causes efflux of arsenic from cells to surrounding culture medium, thereby protecting them from this type of chemical stress. The presence of heavy metals or metalloids in culture medium had no apparent effect on formation of biofilm, in contrast to previous reports that biofilm formation helps protect various microorganism species from adverse environmental conditions. In co-culture experiments, EPS-producing heavy metal resistant strains exerted a protective effect on AEPS-non-producing, heavy metal-sensitive strains; a phenomenon termed "rescuing" of the non-resistant strain.

16.
Front Microbiol ; 7: 1085, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27486441

RESUMEN

Many species or strains of the genus Pseudomonas have been characterized as plant growth promoting rhizobacteria (PGPR). We used a combination of phenotypic and genotypic techniques to analyze the community of fluorescent Pseudomonas strains in the rhizosphere of commercially grown Mentha piperita (peppermint). Biochemical techniques, Amplified rDNA Restriction Analysis (ARDRA), and 16S rRNA gene sequence analysis revealed that the majority of the isolated native fluorescent strains were P. putida. Use of two Repetitive Sequence-based PCR (rep-PCR) techniques, BOX-PCR and ERIC-PCR, allowed us to evaluate diversity among the native strains and to more effectively distinguish among them. PGPR activity was tested for the native strains and reference strain P. fluorescens WCS417r. Micropropagated M. piperita plantlets were exposed to microbial volatile organic compounds (mVOCs) emitted by the bacterial strains, and plant biomass parameters and production of essential oils (EOs) were measured. mVOCs from 11 of the native strains caused an increase in shoot fresh weight. mVOCs from three native strains (SJ04, SJ25, SJ48) induced changes in M. pierita EO composition. The mVOCs caused a reduction of metabolites in the monoterpene pathway, for example menthofuran, and an increase in menthol production. Menthol production is the primary indicator of EO quality. The mVOCs produced by native strains SJ04, SJ25, SJ48, and strain WCS417r were analyzed. The obtained mVOC chromatographic profiles were unique for each of the three native strains analyzed, containing varying hydrocarbon, aromatic, and alogenic compounds. The differential effects of the strains were most likely due to the specific mixtures of mVOCs emitted by each strain, suggesting a synergistic effect occurs among the compounds present.

17.
J Agric Food Chem ; 53(17): 6903-6, 2005 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-16104818

RESUMEN

Plants display a diverse array of inducible changes in secondary metabolites following insect herbivory. Herbivores differ in their feeding behavior, physiology, and mode of attachment to the leaf surface, and such variations might be reflected in the induced responses of damaged plants. Induced changes were analyzed for Minthostachys mollis, a Lamiaceae with medicinal and aromatic uses, and four species of folivore insects with different feeding habits (chewing, scraping, sap-sucking, and puncturing). In M. mollis leaves experimentally exposed to the insects, levels of the two dominant monoterpenes pulegone and menthone were assessed 24 and 48 h after wounding. Menthone content generally decreased in the essential oil of damaged leaves, whereas pulegone concentration increased in all treatments. These changes occurred also in the adjacent undamaged leaves, suggesting a systemic response. The relatively uniform response to different kinds of damage could be attributable to the presence of such a strongly active compound as pulegone in the essential oil of M. mollis. The effects of wounding on essential oil concentration may be significant from a commercial point of view.


Asunto(s)
Insectos/fisiología , Lamiaceae/metabolismo , Aceites Volátiles/química , Hojas de la Planta/metabolismo , Animales , Monoterpenos Ciclohexánicos , Conducta Alimentaria , Lamiaceae/química , Mentol/análisis , Monoterpenos/análisis , Hojas de la Planta/química
18.
J Agric Food Chem ; 50(14): 4059-61, 2002 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12083883

RESUMEN

Plant tissues may show chemical changes following herbivory. In aromatic plants such changes could affect the specific compounds on which commercial exploitation is based. This possibility was analyzed for Mintosthachys mollis, a member of the Lamiaceae native to Central Argentina with medicinal and aromatic uses in the region, and two types of insect herbivores: a leaf miner and a gall insect. Analysis of the essential oils of mined/undamaged leaves, as well as leaves from stems with and without galls, revealed changes in concentrations of the two main monoterpenes. A decrease in pulegone concentration was associated with both types of insect damage, whereas menthone increased significantly only in mined leaves. Inducible chemical changes in aromatic and medicinal plants may be common and widespread; their economic implications deserve investigation.


Asunto(s)
Dípteros/fisiología , Lamiaceae/química , Mentol/análogos & derivados , Monoterpenos , Aceites Volátiles/química , Aceites de Plantas/química , Animales , Cromatografía de Gases , Monoterpenos Ciclohexánicos , Mentol/análisis , Hojas de la Planta/química , Terpenos/análisis
19.
Plant Physiol Biochem ; 49(10): 1177-82, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21843946

RESUMEN

Volatile organic compounds (VOCs), characterized by low molecular weight and high vapor pressure, are produced by all organisms as part of normal metabolism, and play important roles in communication within and between organisms. We examined the effects of VOCs released by three species of plant growth-promoting rhizobacteria (Pseudomonas fluorescens, Bacillus subtilis, Azospirillum brasilense) on growth parameters and composition of essential oils (EO) in the aromatic plant Mentha piperita (peppermint). The bacteria and plants were grown on the same Petri dish, but were separated by a physical barrier such that the plants were exposed only to VOCs but not to solutes from the bacteria. Growth parameters of plants exposed to VOCs of P. fluorescens or B. subtilis were significantly higher than those of controls or A. brasilense-treated plants. Production of EOs (monoterpenes) was increased 2-fold in P. fluorescens-treated plants. Two major EOs, (+)pulegone and (-)menthone, showed increased biosynthesis in P. fluorescens-treated plants. Menthol in A. brasilense-treated plants was the only major EO that showed a significant decrease. These findings suggest that VOCs of rhizobacteria, besides inducing biosynthesis of secondary metabolites, affect pathway flux or specific steps of monoterpene metabolism. Bacterial VOCs are a rich source for new natural compounds that may increase crop productivity and EO yield of this economically important plant species.


Asunto(s)
Mentha piperita/efectos de los fármacos , Mentha piperita/crecimiento & desarrollo , Aceites Volátiles/metabolismo , Compuestos Orgánicos Volátiles/farmacología , Azospirillum brasilense/química , Bacillus subtilis/química , Vías Biosintéticas/efectos de los fármacos , Medios de Cultivo , Técnicas de Cultivo , Monoterpenos Ciclohexánicos , Mentha piperita/metabolismo , Mentol/metabolismo , Monoterpenos/metabolismo , Pseudomonas fluorescens/química
20.
J Agric Food Chem ; 58(1): 650-4, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20000572

RESUMEN

Italian oregano (Origanumxmajoricum) was subjected to root system inoculation with three species of plant growth-promoting rhizobacteria (PGPRs) (Pseudomonas fluorescens, Bacillus subtilis, Azospirillum brasilense), and essential oil (EO) content and plant growth were measured. Composition of monoterpenes, a major EO component, was analyzed qualitative and quantitatively by gas chromatography. Total EO yield for plants inoculated with P. fluorescens or A. brasilense was 3.57 and 3.41 microg/mg fresh weight, respectively, approximately 2.5-fold higher than controls, without change of quantitative oil composition. The major EO compounds, cis- and trans-sabinene hydrate, gamma-terpinene, carvacrol, and thymol, showed increased biosynthesis. Carvacrol was the only terpene showing significant increase of R% in plants inoculated with A. brasilense. Plant growth parameters (shoot and root fresh and dry weights, numbers of leaves and nodes) were evaluated. Shoot fresh weight was significantly increased by all three PGPR species, but only P. fluorescens and A. brasilense increased root dry weight. These two species have clear commercial potential for economic cultivation of O.xmajoricum. Knowledge of the factors affecting yield and accumulation of monoterpenes is essential for improving production of these economically important plant compounds.


Asunto(s)
Monoterpenos/metabolismo , Origanum/metabolismo , Origanum/microbiología , Microbiología del Suelo , Azospirillum brasilense/fisiología , Bacillus subtilis/fisiología , Monoterpenos/análisis , Aceites Volátiles/análisis , Origanum/química , Origanum/crecimiento & desarrollo , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Pseudomonas fluorescens/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA