Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Biotechnol ; 38(1): 47-67, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28434263

RESUMEN

For thousands of years, plants and their products have been used as the mainstay of medicinal therapy. In recent years, besides attempts to isolate the active ingredients of medicinal plants, other new applications of plant products, such as their use to prepare drug delivery vehicles, have been discovered. Nanobiotechnology is a branch of pharmacology that can provide new approaches for drug delivery by the preparation of biocompatible carrier nanoparticles (NPs). In this article, we review recent studies with four important plant proteins that have been used as carriers for targeted delivery of drugs and genes. Zein is a water-insoluble protein from maize; Gliadin is a 70% alcohol-soluble protein from wheat and corn; legumin is a casein-like protein from leguminous seeds such as peas; lectins are glycoproteins naturally occurring in many plants that recognize specific carbohydrate residues. NPs formed from these proteins show good biocompatibility, possess the ability to enhance solubility, and provide sustained release of drugs and reduce their toxicity and side effects. The effects of preparation methods on the size and loading capacity of these NPs are also described in this review.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanomedicina , Proteínas de Plantas , Animales , Gliadina , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Tamaño de la Partícula , Proteínas Recombinantes , Zeína , Leguminas
2.
J Phys Condens Matter ; 35(7)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36395516

RESUMEN

The steepest-entropy-ascent quantum thermodynamic (SEAQT) framework was used to calculate the stability of a collection of point defects in 2D PtSe2and predict the kinetics with which defects rearrange during thermal annealing. The framework provides a non-equilibrium, ensemble-based framework with a self-consistent link between mechanics (both quantum and classical) and thermodynamics. It employs an equation of motion derived from the principle of steepest entropy ascent (maximum entropy production) to predict the time evolution of a set of occupation probabilities that define the states of a system undergoing a non-equilibrium process. The system is described by a degenerate energy landscape of eigenvalues, and the entropy is found from the occupation probabilities and the eigenlevel degeneracies. Scanning tunneling microscopy was used to identify the structure and distribution of point defects observed experimentally in a 2D PtSe2film. A catalog of observed defects includes six unique point defects (vacancies and anti-site defects on Pt and Se sublattices) and twenty combinations of multiple point defects in close proximity. The defect energies were estimated with density functional theory, while the degeneracies, or density of states, for the 2D film with all possible combinations or arrangements of cataloged defects was constructed using a non-Markovian Monte-Carlo approach (i.e. the Replica-Exchange-Wang-Landau algorithm (Vogelet al2013Phys. Rev. Lett.110210603)) with a q-state Potts model. The energy landscape and associated degeneracies were determined for a 2D PtSe2film two molecules thick and30×30unit cells in area (total of 5400 atoms). The SEAQT equation of motion was applied to the energy landscape to determine how an arbitrary density and arrangement of the six defect types evolve during annealing. Two annealing processes were modeled: heating from 77 K (-196 ∘C) to 523 K (250 ∘C) and isothermal annealing at 523 K. The SEAQT framework predicted defect configurations, which were consistent with experimental STM images.

3.
Expert Opin Drug Deliv ; 12(7): 1089-105, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25613837

RESUMEN

INTRODUCTION: Carbon nanotubes (CNT) have recently been studied as novel and versatile drug and gene delivery vehicles. When CNT are suitably functionalized, they can interact with various cell types and are taken up by endocytosis. AREAS COVERED: Anti-cancer drugs cisplatin and doxorubicin have been delivered by CNT, as well as methotrexate, taxol and gemcitabine. The delivery of the antifungal compound amphotericin B and the oral administration of erythropoietin have both been assisted using CNT. Frequently, targeting moieties such as folic acid, epidermal growth factor or various antibodies are attached to the CNT-drug nanovehicle. Different kinds of functionalization (e.g., polycations) have been used to allow CNT to act as gene delivery vectors. Plasmid DNA, small interfering RNA and micro-RNA have all been delivered by CNT vehicles. Significant concerns are raised about the nanotoxicology of the CNT and their potentially damaging effects on the environment. EXPERT OPINION: CNT-mediated drug delivery has been studied for over a decade, and both in vitro and in vivo studies have been reported. The future success of CNTs as vectors in vivo and in clinical application will depend on achievement of efficacious therapy with minimal adverse effects and avoidance of possible toxic and environmentally damaging effects.


Asunto(s)
Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Nanotubos de Carbono , Animales , Antineoplásicos/administración & dosificación , Terapia Genética/métodos , Vectores Genéticos , Humanos , Plásmidos/administración & dosificación , ARN Interferente Pequeño/administración & dosificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA