Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33468630

RESUMEN

Precise, quantitative measurements of the hydration status of skin can yield important insights into dermatological health and skin structure and function, with additional relevance to essential processes of thermoregulation and other features of basic physiology. Existing tools for determining skin water content exploit surrogate electrical assessments performed with bulky, rigid, and expensive instruments that are difficult to use in a repeatable manner. Recent alternatives exploit thermal measurements using soft wireless devices that adhere gently and noninvasively to the surface of the skin, but with limited operating range (∼1 cm) and high sensitivity to subtle environmental fluctuations. This paper introduces a set of ideas and technologies that overcome these drawbacks to enable high-speed, robust, long-range automated measurements of thermal transport properties via a miniaturized, multisensor module controlled by a long-range (∼10 m) Bluetooth Low Energy system on a chip, with a graphical user interface to standard smartphones. Soft contact to the surface of the skin, with almost zero user burden, yields recordings that can be quantitatively connected to hydration levels of both the epidermis and dermis, using computational modeling techniques, with high levels of repeatability and insensitivity to ambient fluctuations in temperature. Systematic studies of polymers in layered configurations similar to those of human skin, of porcine skin with known levels of hydration, and of human subjects with benchmarks against clinical devices validate the measurement approach and associated sensor hardware. The results support capabilities in characterizing skin barrier function, assessing severity of skin diseases, and evaluating cosmetic and medication efficacy, for use in the clinic or in the home.


Asunto(s)
Electrónica , Piel/patología , Agua , Tecnología Inalámbrica , Adolescente , Adulto , Preescolar , Análisis de Elementos Finitos , Humanos , Temperatura
2.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33893178

RESUMEN

Capabilities in continuous monitoring of key physiological parameters of disease have never been more important than in the context of the global COVID-19 pandemic. Soft, skin-mounted electronics that incorporate high-bandwidth, miniaturized motion sensors enable digital, wireless measurements of mechanoacoustic (MA) signatures of both core vital signs (heart rate, respiratory rate, and temperature) and underexplored biomarkers (coughing count) with high fidelity and immunity to ambient noises. This paper summarizes an effort that integrates such MA sensors with a cloud data infrastructure and a set of analytics approaches based on digital filtering and convolutional neural networks for monitoring of COVID-19 infections in sick and healthy individuals in the hospital and the home. Unique features are in quantitative measurements of coughing and other vocal events, as indicators of both disease and infectiousness. Systematic imaging studies demonstrate correlations between the time and intensity of coughing, speaking, and laughing and the total droplet production, as an approximate indicator of the probability for disease spread. The sensors, deployed on COVID-19 patients along with healthy controls in both inpatient and home settings, record coughing frequency and intensity continuously, along with a collection of other biometrics. The results indicate a decaying trend of coughing frequency and intensity through the course of disease recovery, but with wide variations across patient populations. The methodology creates opportunities to study patterns in biometrics across individuals and among different demographic groups.


Asunto(s)
COVID-19/fisiopatología , Frecuencia Cardíaca , Frecuencia Respiratoria , Ruidos Respiratorios , SARS-CoV-2 , Tecnología Inalámbrica , Biomarcadores , Humanos , Monitoreo Fisiológico
3.
Nat Mater ; 20(11): 1559-1570, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34326506

RESUMEN

Flexible electronic/optoelectronic systems that can intimately integrate onto the surfaces of vital organ systems have the potential to offer revolutionary diagnostic and therapeutic capabilities relevant to a wide spectrum of diseases and disorders. The critical interfaces between such technologies and living tissues must provide soft mechanical coupling and efficient optical/electrical/chemical exchange. Here, we introduce a functional adhesive bioelectronic-tissue interface material, in the forms of mechanically compliant, electrically conductive, and optically transparent encapsulating coatings, interfacial layers or supporting matrices. These materials strongly bond both to the surfaces of the devices and to those of different internal organs, with stable adhesion for several days to months, in chemistries that can be tailored to bioresorb at controlled rates. Experimental demonstrations in live animal models include device applications that range from battery-free optoelectronic systems for deep-brain optogenetics and subdermal phototherapy to wireless millimetre-scale pacemakers and flexible multielectrode epicardial arrays. These advances have immediate applicability across nearly all types of bioelectronic/optoelectronic system currently used in animal model studies, and they also have the potential for future treatment of life-threatening diseases and disorders in humans.


Asunto(s)
Implantes Absorbibles , Adhesivos , Animales , Conductividad Eléctrica , Electrónica
4.
Proc Natl Acad Sci U S A ; 116(43): 21427-21437, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31601737

RESUMEN

Pharmacology and optogenetics are widely used in neuroscience research to study the central and peripheral nervous systems. While both approaches allow for sophisticated studies of neural circuitry, continued advances are, in part, hampered by technology limitations associated with requirements for physical tethers that connect external equipment to rigid probes inserted into delicate regions of the brain. The results can lead to tissue damage and alterations in behavioral tasks and natural movements, with additional difficulties in use for studies that involve social interactions and/or motions in complex 3-dimensional environments. These disadvantages are particularly pronounced in research that demands combined optogenetic and pharmacological functions in a single experiment. Here, we present a lightweight, wireless, battery-free injectable microsystem that combines soft microfluidic and microscale inorganic light-emitting diode probes for programmable pharmacology and optogenetics, designed to offer the features of drug refillability and adjustable flow rates, together with programmable control over the temporal profiles. The technology has potential for large-scale manufacturing and broad distribution to the neuroscience community, with capabilities in targeting specific neuronal populations in freely moving animals. In addition, the same platform can easily be adapted for a wide range of other types of passive or active electronic functions, including electrical stimulation.


Asunto(s)
Optogenética/métodos , Farmacología/métodos , Animales , Encéfalo/metabolismo , Química Encefálica , Channelrhodopsins/metabolismo , Estimulación Eléctrica , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Optogenética/instrumentación , Farmacología/instrumentación , Prótesis e Implantes , Tecnología Inalámbrica/instrumentación
5.
Adm Policy Ment Health ; 47(6): 935-945, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32086658

RESUMEN

Residential treatment (RT) serves 311,000 children and adolescents per year and has been described as a "last resort" by families, healthcare providers, and insurance payors as it is highly disruptive and costly. The purpose of this study was to explore mothers' accounts of the strategies and services they used before admitting their adolescent to RT as well as to understand the barriers they encountered in their adolescent's treatment trajectory. This was a cross-sectional study in which 15 mothers of adolescents currently or previously in RT completed 1-h phone interviews. Data were analyzed using content analysis generating two themes and seven subthemes. The first theme, 'the lead up to residential treatment,' consists of descriptions of the treatment modalities before RT and mothers' initial impressions of RT. The second theme, "fighting tooth and nail," consists of descriptions of mothers' actions to get their adolescent the mental health services they needed as well as the barriers they navigated along the way. While their adolescents were serious threats to themselves and others, mothers reported encountering significant obstacles to accessing RT, including substantial societal and financial barriers. While there is no shortage of evidence-based practices available that are effective in reducing disruptive behaviors in children, there are still macro-level implementation barriers that families are navigating to access mental health treatment for their child.


Asunto(s)
Servicios de Salud Mental , Madres , Adolescente , Niño , Estudios Transversales , Femenino , Accesibilidad a los Servicios de Salud , Humanos , Salud Mental
6.
Proc Natl Acad Sci U S A ; 113(22): 6131-6, 2016 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-27185907

RESUMEN

Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios.


Asunto(s)
Materiales Biocompatibles/química , Suministros de Energía Eléctrica , Litio/química , Piel/química , Termografía/instrumentación , Tecnología Inalámbrica/instrumentación , Electricidad , Electrónica , Voluntarios Sanos , Humanos , Piel/efectos de la radiación
7.
Biophys J ; 114(5): 1067-1079, 2018 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-29539394

RESUMEN

Conformational malleability allows intrinsically disordered proteins (IDPs) to respond agilely to their environments, such as nonspecifically interacting with in vivo bystander macromolecules (or crowders). Previous studies have emphasized conformational compaction of IDPs due to steric repulsion by macromolecular crowders, but effects of soft attraction are largely unexplored. Here we studied the conformational ensembles of the IDP FlgM in both polymer and protein crowders by small-angle neutron scattering. As crowder concentrations increased, the mean radius of gyration of FlgM first decreased but then exhibited an uptick. Ensemble optimization modeling indicated that FlgM conformations under protein crowding segregated into two distinct populations, one compacted and one extended. Coarse-grained simulations showed that compacted conformers fit into an interstitial void and occasionally bind to a surrounding crowder, whereas extended conformers snake through interstitial crevices and bind multiple crowders simultaneously. Crowder-induced conformational segregation may facilitate various cellular functions of IDPs.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Intrínsecamente Desordenadas/química , Tampones (Química) , Modelos Moleculares , Polímeros/química , Conformación Proteica
8.
Adv Funct Mater ; 27(1)2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28798658

RESUMEN

Development of unconventional technologies for wireless collection, storage and analysis of quantitative, clinically relevant information on physiological status is of growing interest. Soft, biocompatible systems are widely regarded as important because they facilitate mounting on external (e.g. skin) and internal (e.g. heart, brain) surfaces of the body. Ultra-miniaturized, lightweight and battery-free devices have the potential to establish complementary options in bio-integration, where chronic interfaces (i.e. months) are possible on hard surfaces such as the fingernails and the teeth, with negligible risk for irritation or discomfort. Here we report materials and device concepts for flexible platforms that incorporate advanced optoelectronic functionality for applications in wireless capture and transmission of photoplethysmograms, including quantitative information on blood oxygenation, heart rate and heart rate variability. Specifically, reflectance pulse oximetry in conjunction with near-field communication (NFC) capabilities enables operation in thin, miniaturized flexible devices. Studies of the material aspects associated with the body interface, together with investigations of the radio frequency characteristics, the optoelectronic data acquisition approaches and the analysis methods capture all of the relevant engineering considerations. Demonstrations of operation on various locations of the body and quantitative comparisons to clinical gold standards establish the versatility and the measurement accuracy of these systems, respectively.

9.
Adv Funct Mater ; 26(40): 7281-7290, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-28413376

RESUMEN

This paper introduces a class of ferromagnetic, folded, soft composite material for skin-interfaced electrodes with releasable interfaces to stretchable, wireless electronic measurement systems. These electrodes establish intimate, adhesive contacts to the skin, in dimensionally stable formats compatible with multiple days of continuous operation, with several key advantages over conventional hydrogel based alternatives. The reported studies focus on aspects ranging from ferromagnetic and mechanical behavior of the materials systems, to electrical properties associated with their skin interface, to system-level integration for advanced electrophysiological monitoring applications. The work combines experimental measurement and theoretical modeling to establish the key design considerations. These concepts have potential uses across a diverse set of skin-integrated electronic technologies.

10.
Small ; 11(8): 906-12, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25367846

RESUMEN

Epidermal electronics with advanced capabilities in near field communications (NFC) are presented. The systems include stretchable coils and thinned NFC chips on thin, low modulus stretchable adhesives, to allow seamless, conformal contact with the skin and simultaneous capabilities for wireless interfaces to any standard, NFC-enabled smartphone, even under extreme deformation and after/during normal daily activities.


Asunto(s)
Electrónica , Piel/patología , Telemetría/instrumentación , Ingeniería Biomédica , Comunicación , Redes de Comunicación de Computadores , Dimetilpolisiloxanos/química , Humanos , Monitoreo Ambulatorio/instrumentación , Óptica y Fotónica , Fotoquímica , Tereftalatos Polietilenos/química , Presión , Solubilidad , Telemetría/métodos , Agua/química
11.
Nat Mater ; 13(6): 593-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24776535

RESUMEN

Expenses associated with shipping, installation, land, regulatory compliance and on-going maintenance and operations of utility-scale photovoltaics can be significantly reduced by increasing the power conversion efficiency of solar modules through improved materials, device designs and strategies for light management. Single-junction cells have performance constraints defined by their Shockley-Queisser limits. Multi-junction cells can achieve higher efficiencies, but epitaxial and current matching requirements between the single junctions in the devices hinder progress. Mechanical stacking of independent multi-junction cells circumvents these disadvantages. Here we present a fabrication approach for the realization of mechanically assembled multi-junction cells using materials and techniques compatible with large-scale manufacturing. The strategy involves printing-based stacking of microscale solar cells, sol-gel processes for interlayers with advanced optical, electrical and thermal properties, together with unusual packaging techniques, electrical matching networks, and compact ultrahigh-concentration optics. We demonstrate quadruple-junction, four-terminal solar cells with measured efficiencies of 43.9% at concentrations exceeding 1,000 suns, and modules with efficiencies of 36.5%.

12.
Int J Dermatol ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38602089

RESUMEN

BACKGROUND: Erythropoietic protoporphyria (EPP) causes painful light sensitivity, limiting quality of life. Our objective was to develop and validate a wearable light exposure device and correlate measurements with light sensitivity in EPP to predict and prevent symptoms. METHODS: A wearable light dosimeter was developed to capture light doses of UVA, blue, and red wavelengths. A prospective observational pilot study was performed in which five EPP patients wore two light dosimeters for 3 weeks, one as a watch, and one as a shirt clip. RESULTS: Standard deviation (SD) increases from the mean in the daily blue light dose increased the odds ratio (OR) for symptom risk more than the self-reported outdoor time (OR 2.76 vs. 2.38) or other wavelengths, and a one SD increase from the mean in the daily blue light wristband device dose increased the OR for symptom risk more than the daily blue light shirt clip (OR 2.45 vs. 1.62). The area under the receiver operator curve for the blue light wristband dose was 0.78, suggesting 78% predictive accuracy. CONCLUSION: These data demonstrate that wearable blue light dosimetry worn as a wristband is a promising method for measuring light exposure and predicting and preventing symptoms in EPP.

13.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798493

RESUMEN

Neurotechnologies and genetic tools for dissecting neural circuit functions have advanced rapidly over the past decade, although the development of complementary pharmacological method-ologies has comparatively lagged. Understanding the precise pharmacological mechanisms of neuroactive compounds is critical for advancing basic neurobiology and neuropharmacology, as well as for developing more effective treatments for neurological and neuropsychiatric disorders. However, integrating modern tools for assessing neural activity in large-scale neural networks with spatially localized drug delivery remains a major challenge. Here, we present a dual microfluidic-photometry platform that enables simultaneous intracranial drug delivery with neural dynamics monitoring in the rodent brain. The integrated platform combines a wireless, battery-free, miniaturized fluidic microsystem with optical probes, allowing for spatially and temporally specific drug delivery while recording activity-dependent fluorescence using genetically encoded calcium indicators (GECIs), neurotransmitter sensors GRAB NE and GRAB DA , and neuropeptide sensors. We demonstrate the performance this platform for investigating neuropharmacological mechanisms in vivo and characterize its efficacy in probing precise mechanistic actions of neuroactive compounds across several rapidly evolving neuroscience domains.

14.
Neuron ; 112(11): 1764-1777.e5, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38537641

RESUMEN

Comprehensive, continuous quantitative monitoring of intricately orchestrated physiological processes and behavioral states in living organisms can yield essential data for elucidating the function of neural circuits under healthy and diseased conditions, for defining the effects of potential drugs and treatments, and for tracking disease progression and recovery. Here, we report a wireless, battery-free implantable device and a set of associated algorithms that enable continuous, multiparametric physio-behavioral monitoring in freely behaving small animals and interacting groups. Through advanced analytics approaches applied to mechano-acoustic signals of diverse body processes, the device yields heart rate, respiratory rate, physical activity, temperature, and behavioral states. Demonstrations in pharmacological, locomotor, and acute and social stress tests and in optogenetic studies offer unique insights into the coordination of physio-behavioral characteristics associated with healthy and perturbed states. This technology has broad utility in neuroscience, physiology, behavior, and other areas that rely on studies of freely moving, small animal models.


Asunto(s)
Conducta Animal , Optogenética , Tecnología Inalámbrica , Animales , Conducta Animal/fisiología , Optogenética/métodos , Ratones , Frecuencia Cardíaca/fisiología , Masculino , Prótesis e Implantes , Frecuencia Respiratoria/fisiología , Monitoreo Fisiológico/métodos , Monitoreo Fisiológico/instrumentación , Algoritmos
15.
Adv Healthc Mater ; 12(4): e2202021, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36337006

RESUMEN

Accurate measurements of skin hydration are of great interest to dermatological science and clinical practice. This parameter serves as a relevant surrogate of skin barrier function, a key representative benchmark for overall skin health. The skin hydration sensor (SHS) is a soft, skin-interfaced wireless system that exploits a thermal measurement method, as an alternative to conventional impedance-based hand-held probes. This study presents multiple strategies for maximizing the sensitivity and reliability of this previously reported SHS platform. An in-depth analysis of the thermal physics of the measurement process serves as the basis for structural optimizations of the electronics and the interface to the skin. Additional engineering advances eliminate variabilities associated with manual use of the device and with protocols for the measurement. The cumulative effect is an improvement in sensitivity by 135% and in repeatability by 36% over previously reported results. Pilot trials on more than 200 patients in a dermatology clinic validate the practical utility of the sensor for fast, reliable measurements.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Reproducibilidad de los Resultados , Piel/química , Electrónica/métodos , Tecnología Inalámbrica
16.
Nat Biomed Eng ; 7(10): 1215-1228, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37037964

RESUMEN

Devices for monitoring blood haemodynamics can guide the perioperative management of patients with cardiovascular disease. Current technologies for this purpose are constrained by wired connections to external electronics, and wireless alternatives are restricted to monitoring of either blood pressure or blood flow. Here we report the design aspects and performance parameters of an integrated wireless sensor capable of implantation in the heart or in a blood vessel for simultaneous measurements of pressure, flow rate and temperature in real time. The sensor is controlled via long-range communication through a subcutaneously implanted and wirelessly powered Bluetooth Low Energy system-on-a-chip. The device can be delivered via a minimally invasive transcatheter procedure or it can be mounted on a passive medical device such as a stent, as we show for the case of the pulmonary artery in a pig model and the aorta and left ventricle in a sheep model, where the device performs comparably to clinical tools for monitoring of blood flow and pressure. Battery-less and wireless devices such as these that integrate capabilities for flow, pressure and temperature sensing offer the potential for continuous monitoring of blood haemodynamics in patients.

17.
Nat Med ; 29(12): 3137-3148, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37973946

RESUMEN

The human body generates various forms of subtle, broadband acousto-mechanical signals that contain information on cardiorespiratory and gastrointestinal health with potential application for continuous physiological monitoring. Existing device options, ranging from digital stethoscopes to inertial measurement units, offer useful capabilities but have disadvantages such as restricted measurement locations that prevent continuous, longitudinal tracking and that constrain their use to controlled environments. Here we present a wireless, broadband acousto-mechanical sensing network that circumvents these limitations and provides information on processes including slow movements within the body, digestive activity, respiratory sounds and cardiac cycles, all with clinical grade accuracy and independent of artifacts from ambient sounds. This system can also perform spatiotemporal mapping of the dynamics of gastrointestinal processes and airflow into and out of the lungs. To demonstrate the capabilities of this system we used it to monitor constrained respiratory airflow and intestinal motility in neonates in the neonatal intensive care unit (n = 15), and to assess regional lung function in patients undergoing thoracic surgery (n = 55). This broadband acousto-mechanical sensing system holds the potential to help mitigate cardiorespiratory instability and manage disease progression in patients through continuous monitoring of physiological signals, in both the clinical and nonclinical setting.


Asunto(s)
Unidades de Cuidado Intensivo Neonatal , Recién Nacido , Humanos , Monitoreo Fisiológico
18.
Nat Biomed Eng ; 7(10): 1252-1269, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37106153

RESUMEN

Fully implantable wireless systems for the recording and modulation of neural circuits that do not require physical tethers or batteries allow for studies that demand the use of unconstrained and freely behaving animals in isolation or in social groups. Moreover, feedback-control algorithms that can be executed within such devices without the need for remote computing eliminate virtual tethers and any associated latencies. Here we report a wireless and battery-less technology of this type, implanted subdermally along the back of freely moving small animals, for the autonomous recording of electroencephalograms, electromyograms and body temperature, and for closed-loop neuromodulation via optogenetics and pharmacology. The device incorporates a system-on-a-chip with Bluetooth Low Energy for data transmission and a compressed deep-learning module for autonomous operation, that offers neurorecording capabilities matching those of gold-standard wired systems. We also show the use of the implant in studies of sleep-wake regulation and for the programmable closed-loop pharmacological suppression of epileptic seizures via feedback from electroencephalography. The technology can support a broader range of applications in neuroscience and in biomedical research with small animals.

19.
IISE Trans Occup Ergon Hum Factors ; 10(4): 173-181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36181238

RESUMEN

OCCUPATIONAL APPLICATIONSThis case report shares an approach to ergonomics kaizen events, that is, using workplace teams in a concentrated activity to make as many improvements as possible in a few days in a given work area. This report provides an overview of (1) the structure of this particular approach, (2) the average number of improvements implemented, and (3) guidance for smaller organizations on less-elaborate approaches. The value of kaizen events is described regarding cultural change and creating habits of continual improvement in daily life, whether at work or at home. Practitioners may benefit from the details in this report, such as features important for success and the schedule for a four-day event. Researchers may benefit from familiarity with a nontraditional organizational structure. Furthermore, the kaizen approach may lend itself to university-enterprise interactions, including a changing context in which research topics can be formulated and results applied.


Asunto(s)
Ergonomía , Lugar de Trabajo , Humanos , Ergonomía/métodos
20.
Front Psychiatry ; 13: 777124, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35722588

RESUMEN

Objectives: People with mental illnesses are overrepresented in the U.S. prison population. It is well established that incarceration for this population poses physical and mental health risks including greater likelihood of victimization and suicide compared to the general prison population. Yet, research is less clear about how staff and services shape these prison experiences. The aim of this study was to examine how people with mental illnesses experience incarceration through interactions with correctional officers and treatment staff and their use of physical and mental health care services. Methods: This project utilized a non-experimental design and qualitative research approach to address the research aims. Adults with mental illnesses who were formerly incarcerated were recruited from three different sites in the Midwest and East Coast. Participants completed an in-depth interview and brief survey on health histories. Data were analyzed using descriptive statistics and the framework method for qualitative analysis. Results: Participants (n = 43) identified challenges to utilizing health and mental health care including perceived access and quality of mental health, medical, or substance use treatments obtained during prison as well as participant's willingness to engage in services. Access to health care was marked by cumbersome procedures required for service use requests and inadequate staffing. Participants reported mixed experiences with medical and mental health staff ranging from experiencing kindness to feeling staff did not believe them. Participants perceived most correctional officers as exhibiting professionalism while some enacted stigma and created additional stressors. Conclusion: Interactions with correctional staff and health care services have the potential to buffer the stressors and risks inherent in prisons for people with mental illnesses. Perceptions from participants suggest both individual- and systems-level opportunities for intervention to better support people with mental illnesses in prison.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA