Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 159(7): 1652-64, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25525882

RESUMEN

The cell envelope protects bacteria from their surroundings. Defects in its integrity or assembly are sensed by signal transduction systems, allowing cells to rapidly adjust. The Rcs phosphorelay responds to outer membrane (OM)- and peptidoglycan-related stress in enterobacteria. We elucidated how the OM lipoprotein RcsF, the upstream Rcs component, senses envelope stress and activates the signaling cascade. RcsF interacts with BamA, the major component of the ß-barrel assembly machinery. In growing cells, BamA continuously funnels RcsF through the ß-barrel OmpA, displaying RcsF on the cell surface. This process spatially separates RcsF from the downstream Rcs component, which we show is the inner membrane protein IgaA. The Rcs system is activated when BamA fails to bind RcsF and funnel it to OmpA. Newly synthesized RcsF then remains periplasmic, interacting with IgaA to activate the cascade. Thus RcsF senses envelope damage by monitoring the activity of the Bam machinery.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Pared Celular/química , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
2.
Nature ; 597(7877): 533-538, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34497420

RESUMEN

Bacteria in the gut can modulate the availability and efficacy of therapeutic drugs. However, the systematic mapping of the interactions between drugs and bacteria has only started recently1 and the main underlying mechanism proposed is the chemical transformation of drugs by microorganisms (biotransformation). Here we investigated the depletion of 15 structurally diverse drugs by 25 representative strains of gut bacteria. This revealed 70 bacteria-drug interactions, 29 of which had not to our knowledge been reported before. Over half of the new interactions can be ascribed to bioaccumulation; that is, bacteria storing the drug intracellularly without chemically modifying it, and in most cases without the growth of the bacteria being affected. As a case in point, we studied the molecular basis of bioaccumulation of the widely used antidepressant duloxetine by using click chemistry, thermal proteome profiling and metabolomics. We find that duloxetine binds to several metabolic enzymes and changes the metabolite secretion of the respective bacteria. When tested in a defined microbial community of accumulators and non-accumulators, duloxetine markedly altered the composition of the community through metabolic cross-feeding. We further validated our findings in an animal model, showing that bioaccumulating bacteria attenuate the behavioural response of Caenorhabditis elegans to duloxetine. Together, our results show that bioaccumulation by gut bacteria may be a common mechanism that alters drug availability and bacterial metabolism, with implications for microbiota composition, pharmacokinetics, side effects and drug responses, probably in an individual manner.


Asunto(s)
Bacterias/metabolismo , Bioacumulación , Clorhidrato de Duloxetina/metabolismo , Microbioma Gastrointestinal/fisiología , Animales , Antidepresivos/metabolismo , Antidepresivos/farmacocinética , Caenorhabditis elegans/metabolismo , Células/metabolismo , Química Clic , Clorhidrato de Duloxetina/efectos adversos , Clorhidrato de Duloxetina/farmacocinética , Humanos , Metabolómica , Modelos Animales , Proteómica , Reproducibilidad de los Resultados
3.
Cell ; 143(7): 1097-109, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21183073

RESUMEN

Growth of the mesh-like peptidoglycan (PG) sacculus located between the bacterial inner and outer membranes (OM) is tightly regulated to ensure cellular integrity, maintain cell shape, and orchestrate division. Cytoskeletal elements direct placement and activity of PG synthases from inside the cell, but precise spatiotemporal control over this process is poorly understood. We demonstrate that PG synthases are also controlled from outside of the sacculus. Two OM lipoproteins, LpoA and LpoB, are essential for the function, respectively, of PBP1A and PBP1B, the major E. coli bifunctional PG synthases. Each Lpo protein binds specifically to its cognate PBP and stimulates its transpeptidase activity, thereby facilitating attachment of new PG to the sacculus. LpoB shows partial septal localization, and our data suggest that the LpoB-PBP1B complex contributes to OM constriction during cell division. LpoA/LpoB and their PBP-docking regions are restricted to γ-proteobacteria, providing models for niche-specific regulation of sacculus growth.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Peptidoglicano/biosíntesis , Proteínas de la Membrana Bacteriana Externa/química , División Celular , Pared Celular/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Dominios y Motivos de Interacción de Proteínas
4.
PLoS Genet ; 18(5): e1010222, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35604931

RESUMEN

Insertion of new material into the Escherichia coli peptidoglycan (PG) sacculus between the cytoplasmic membrane and the outer membrane requires a well-organized balance between synthetic and hydrolytic activities to maintain cell shape and avoid lysis. Since most bacteria carry multiple enzymes carrying the same type of PG hydrolytic activity, we know little about the specific function of given enzymes. Here we show that the DD-carboxy/endopeptidase PBP4 localizes in a PBP1A/LpoA and FtsEX dependent fashion at midcell during septal PG synthesis. Midcell localization of PBP4 requires its non-catalytic domain 3 of unknown function, but not the activity of PBP4 or FtsE. Microscale thermophoresis with isolated proteins shows that PBP4 interacts with NlpI and the FtsEX-interacting protein EnvC, an activator of amidases AmiA and AmiB, which are needed to generate denuded glycan strands to recruit the initiator of septal PG synthesis, FtsN. The domain 3 of PBP4 is needed for the interaction with NlpI and EnvC, but not PBP1A or LpoA. In vivo crosslinking experiments confirm the interaction of PBP4 with PBP1A and LpoA. We propose that the interaction of PBP4 with EnvC, whilst not absolutely necessary for mid-cell recruitment of either protein, coordinates the activities of PBP4 and the amidases, which affects the formation of denuded glycan strands that attract FtsN. Consistent with this model, we found that the divisome assembly at midcell was premature in cells lacking PBP4, illustrating how the complexity of interactions affect the timing of cell division initiation.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Transportadoras de Casetes de Unión a ATP/metabolismo , Amidohidrolasas/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Endopeptidasas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Peptidoglicano/metabolismo
5.
EMBO J ; 39(5): e102246, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32009249

RESUMEN

The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Lipoproteínas/metabolismo , Complejos Multienzimáticos , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Pared Celular/enzimología , Endopeptidasas/genética , Endopeptidasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , N-Acetil Muramoil-L-Alanina Amidasa/genética , Peptidoglicano/metabolismo
6.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37014365

RESUMEN

MOTIVATION: High-throughput chemical genomic screens produce informative datasets, providing valuable insights into unknown gene function on a genome-wide level. However, there is currently no comprehensive analytic package publicly available. We developed ChemGAPP to bridge this gap. ChemGAPP integrates various steps in a streamlined and user-friendly format, including rigorous quality control measures to curate screening data. RESULTS: ChemGAPP provides three sub-packages for different chemical-genomic screens: ChemGAPP Big for large-scale screens; ChemGAPP Small for small-scale screens; and ChemGAPP GI for genetic interaction screens. ChemGAPP Big, tested against the Escherichiacoli KEIO collection, revealed reliable fitness scores which displayed biologically relevant phenotypes. ChemGAPP Small demonstrated significant changes in phenotype in a small-scale screen. ChemGAPP GI was benchmarked against three sets of genes with known epistasis types and successfully reproduced each interaction type. AVAILABILITY AND IMPLEMENTATION: ChemGAPP is available at https://github.com/HannahMDoherty/ChemGAPP, as a standalone Python package as well as Streamlit applications.


Asunto(s)
Genómica , Programas Informáticos , Genoma , Fenotipo , Pruebas Genéticas
7.
Bioinformatics ; 39(7)2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37348862

RESUMEN

MOTIVATION: Wastewater treatment plants (WWTPs) harbor a dense and diverse microbial community. They constantly receive antimicrobial residues and resistant strains, and therefore provide conditions for horizontal gene transfer (HGT) of antimicrobial resistance (AMR) determinants. This facilitates the transmission of clinically important genes between, e.g. enteric and environmental bacteria, and vice versa. Despite the clinical importance, tools for predicting HGT remain underdeveloped. RESULTS: In this study, we examined to which extent water cycle microbial community composition, as inferred by partial 16S rRNA gene sequences, can predict plasmid permissiveness, i.e. the ability of cells to receive a plasmid through conjugation, based on data from standardized filter mating assays using fluorescent bio-reporter plasmids. We leveraged a range of machine learning models for predicting the permissiveness for each taxon in the community, representing the range of hosts a plasmid is able to transfer to, for three broad host-range resistance IncP plasmids (pKJK5, pB10, and RP4). Our results indicate that the predicted permissiveness from the best performing model (random forest) showed a moderate-to-strong average correlation of 0.49 for pB10 [95% confidence interval (CI): 0.44-0.55], 0.43 for pKJK5 (0.95% CI: 0.41-0.49), and 0.53 for RP4 (0.95% CI: 0.48-0.57) with the experimental permissiveness in the unseen test dataset. Predictive phylogenetic signals occurred despite the broad host-range nature of these plasmids. Our results provide a framework that contributes to the assessment of the risk of AMR pollution in wastewater systems. AVAILABILITY AND IMPLEMENTATION: The predictive tool is available as an application at https://github.com/DaneshMoradigaravand/PlasmidPerm.


Asunto(s)
Microbiota , Aguas Residuales , ARN Ribosómico 16S/genética , Filogenia , Tolerancia , Plásmidos/genética , Transferencia de Gen Horizontal
8.
Langmuir ; 40(14): 7353-7363, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38536768

RESUMEN

Nanomaterials of zinc oxide (ZnO) exhibit antibacterial activities under ambient illumination that result in cell membrane permeability and disorganization, representing an important opportunity for health-related applications. However, the development of antibiofouling surfaces incorporating ZnO nanomaterials has remained limited. In this work, we fabricate superhydrophobic surfaces based on ZnO nanopillars. Water droplets on these superhydrophobic surfaces exhibit small contact angle hysteresis (within 2-3°) and a minimal tilting angle of 1°. Further, falling droplets bounce off when impacting the superhydrophobic ZnO surfaces with a range of Weber numbers (8-46), demonstrating that the surface facilitates a robust Cassie-Baxter wetting state. In addition, the antibiofouling efficacy of the surfaces has been established against model pathogenic Gram-positive bacteria Staphylococcus aureus (S. aureus) and Gram-negative bacteria Escherichia coli (E. coli). No viable colonies of E. coli were recoverable on the superhydrophobic surfaces of ZnO nanopillars incubated with cultured bacterial solutions for 18 h. Further, our tests demonstrate a substantial reduction in the quantity of S. aureus that attached to the superhydrophobic ZnO nanopillars. Thus, the superhydrophobic ZnO surfaces offer a viable design of antibiofouling materials that do not require additional UV illumination or antimicrobial agents.


Asunto(s)
Óxido de Zinc , Humectabilidad , Óxido de Zinc/farmacología , Óxido de Zinc/química , Propiedades de Superficie , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Antibacterianos/química
9.
Nature ; 559(7713): 259-263, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973719

RESUMEN

The spread of antimicrobial resistance has become a serious public health concern, making once-treatable diseases deadly again and undermining the achievements of modern medicine1,2. Drug combinations can help to fight multi-drug-resistant bacterial infections, yet they are largely unexplored and rarely used in clinics. Here we profile almost 3,000 dose-resolved combinations of antibiotics, human-targeted drugs and food additives in six strains from three Gram-negative pathogens-Escherichia coli, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa-to identify general principles for antibacterial drug combinations and understand their potential. Despite the phylogenetic relatedness of the three species, more than 70% of the drug-drug interactions that we detected are species-specific and 20% display strain specificity, revealing a large potential for narrow-spectrum therapies. Overall, antagonisms are more common than synergies and occur almost exclusively between drugs that target different cellular processes, whereas synergies are more conserved and are enriched in drugs that target the same process. We provide mechanistic insights into this dichotomy and further dissect the interactions of the food additive vanillin. Finally, we demonstrate that several synergies are effective against multi-drug-resistant clinical isolates in vitro and during infections of the larvae of the greater wax moth Galleria mellonella, with one reverting resistance to the last-resort antibiotic colistin.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/efectos de los fármacos , Animales , Benzaldehídos/farmacología , Colistina/farmacología , Combinación de Medicamentos , Interacciones Farmacológicas , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Sinergismo Farmacológico , Escherichia coli/clasificación , Escherichia coli/efectos de los fármacos , Aditivos Alimentarios/farmacología , Larva/efectos de los fármacos , Larva/microbiología , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/microbiología , Filogenia , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/efectos de los fármacos , Salmonella typhimurium/clasificación , Salmonella typhimurium/efectos de los fármacos , Especificidad de la Especie
10.
PLoS Genet ; 17(12): e1009586, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34941903

RESUMEN

The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target.


Asunto(s)
Pared Celular/genética , Proteínas de Escherichia coli/genética , Lipopolisacáridos/genética , Oxidorreductasas/genética , Peptidoglicano/genética , División Celular/genética , Membrana Celular/genética , Membrana Celular/microbiología , Pared Celular/microbiología , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Lipopolisacáridos/biosíntesis , Mutagénesis , Fosfolípidos/biosíntesis , Fosfolípidos/genética
11.
Mol Microbiol ; 116(1): 329-342, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33660879

RESUMEN

The integrity of the cell envelope of E. coli relies on the concerted activity of multi-protein machineries that synthesize the peptidoglycan (PG) and the outer membrane (OM). Our previous work found that the depletion of lipopolysaccharide (LPS) export to the OM induces an essential PG remodeling process involving LD-transpeptidases (LDTs), the glycosyltransferase function of PBP1B and the carboxypeptidase PBP6a. Consequently, cells with defective OM biogenesis lyse if they lack any of these PG enzymes. Here we report that the morphological defects, and lysis associated with a ldtF mutant with impaired LPS transport, are alleviated by the loss of the predicted OM-anchored lipoprotein ActS (formerly YgeR). We show that ActS is an inactive member of LytM-type peptidoglycan endopeptidases due to a degenerated catalytic domain. ActS is capable of activating all three main periplasmic peptidoglycan amidases, AmiA, AmiB, and AmiC, which were previously reported to be activated only by EnvC and/or NlpD. Our data also suggest that in vivo ActS preferentially activates AmiC and that its function is linked to cell envelope stress.


Asunto(s)
Membrana Externa Bacteriana/fisiología , Carboxipeptidasas/metabolismo , Endopeptidasas/metabolismo , Escherichia coli/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Carboxipeptidasas/genética , Membrana Celular/fisiología , Pared Celular/metabolismo , Endopeptidasas/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Eliminación de Gen , Lipopolisacáridos/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Plásmidos/genética , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Estrés Fisiológico/fisiología
12.
Microbiology (Reading) ; 168(5)2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35604759

RESUMEN

Bacterial amidases are essential to split the shared envelope of adjunct daughter cells to allow cell separation. Their activity needs to be precisely controlled to prevent cell lysis. In Escherichia coli, amidase activity is controlled by three regulatory proteins NlpD, EnvC and ActS. However, recent studies linked the outer membrane lipoprotein DolP (formerly YraP) as a potential upstream regulator of NlpD. In this study we explored this link in further detail. To our surprise DolP did not modulate amidase activity in vitro and was unable to interact with NlpD in pull-down and MST (MicroScale Thermophoresis) assays. Next, we excluded the hypothesis that ΔdolP phenocopied ΔnlpD in a range of envelope stresses. However, morphological analysis of double deletion mutants of amidases (AmiA, AmiB AmiC) and amidase regulators with dolP revealed that ΔamiAΔdolP and ΔenvCΔdolP mutants display longer chain length compared to their parental strains indicating a role for DolP in cell division. Overall, we present evidence that DolP does not affect NlpD function in vitro, implying that DolP is not an upstream regulator of NlpD. However, DolP may impact daughter cell separation by interacting directly with AmiA or AmiC, or by a yet undiscovered mechanism.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Separación Celular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Peptidoglicano/metabolismo
13.
FASEB J ; 34(5): 6284-6301, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32201986

RESUMEN

Mitophagy is a key process regulating mitochondrial quality control. Several mechanisms have been proposed to regulate mitophagy, but these have mostly been studied using stably expressed non-native proteins in immortalized cell lines. In skeletal muscle, mitophagy and its molecular mechanisms require more thorough investigation. To measure mitophagy directly, we generated a stable skeletal muscle C2C12 cell line, expressing a mitophagy reporter construct (mCherry-green fluorescence protein-mtFIS1101-152 ). Here, we report that both carbonyl cyanide m-chlorophenyl hydrazone (CCCP) treatment and adenosine monophosphate activated protein kinase (AMPK) activation by 991 promote mitochondrial fission via phosphorylation of MFF and induce mitophagy by ~20%. Upon CCCP treatment, but not 991, ubiquitin phosphorylation, a read-out of PTEN-induced kinase 1 (PINK1) activity, and Parkin E3 ligase activity toward CDGSH iron sulfur domain 1 (CISD1) were increased. Although the PINK1-Parkin signaling pathway is active in response to CCCP treatment, we observed no change in markers of mitochondrial protein content. Interestingly, our data shows that TANK-binding kinase 1 (TBK1) phosphorylation is increased after both CCCP and 991 treatments, suggesting TBK1 activation to be independent of both PINK1 and Parkin. Finally, we confirmed in non-muscle cell lines that TBK1 phosphorylation occurs in the absence of PINK1 and is regulated by AMPK-dependent signaling. Thus, AMPK activation promotes mitophagy by enhancing mitochondrial fission (via MFF phosphorylation) and autophagosomal engulfment (via TBK1 activation) in a PINK1-Parkin independent manner.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Dinámicas Mitocondriales , Mitofagia , Músculo Esquelético/patología , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Activación Enzimática , Células HeLa , Humanos , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Ionóforos de Protónes/farmacología , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
14.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34884635

RESUMEN

Bacteria must maintain the ability to modify and repair the peptidoglycan layer without jeopardising its essential functions in cell shape, cellular integrity and intermolecular interactions. A range of new experimental techniques is bringing an advanced understanding of how bacteria regulate and achieve peptidoglycan synthesis, particularly in respect of the central role played by complexes of Sporulation, Elongation or Division (SEDs) and class B penicillin-binding proteins required for cell division, growth and shape. In this review we highlight relationships implicated by a bioinformatic approach between the outer membrane, cytoskeletal components, periplasmic control proteins, and cell elongation/division proteins to provide further perspective on the interactions of these cell division, growth and shape complexes. We detail the network of protein interactions that assist in the formation of peptidoglycan and highlight the increasingly dynamic and connected set of protein machinery and macrostructures that assist in creating the cell envelope layers in Gram-negative bacteria.


Asunto(s)
Membrana Celular/metabolismo , Bacterias Gramnegativas/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Proteínas Periplasmáticas/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo
15.
J Bacteriol ; 203(2)2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33106348

RESUMEN

The asymmetric Gram-negative outer membrane (OM) is the first line of defense for bacteria against environmental insults and attack by antimicrobials. The key component of the OM is lipopolysaccharide, which is transported to the surface by the essential lipopolysaccharide transport (Lpt) system. Correct folding of the Lpt system component LptD is regulated by a periplasmic metalloprotease, BepA. Here, we present the crystal structure of BepA from Escherichia coli, solved to a resolution of 2.18 Å, in which the M48 protease active site is occluded by an active-site plug. Informed by our structure, we demonstrate that free movement of the active-site plug is essential for BepA function, suggesting that the protein is autoregulated by the active-site plug, which is conserved throughout the M48 metalloprotease family. Targeted mutagenesis of conserved residues reveals that the negative pocket and the tetratricopeptide repeat (TPR) cavity are required for function and degradation of the BAM complex component BamA under conditions of stress. Last, we show that loss of BepA causes disruption of OM lipid asymmetry, leading to surface exposed phospholipid.IMPORTANCE M48 metalloproteases are widely distributed in all domains of life. E. coli possesses four members of this family located in multiple cellular compartments. The functions of these proteases are not well understood. Recent investigations revealed that one family member, BepA, has an important role in the maturation of a central component of the lipopolysaccharide (LPS) biogenesis machinery. Here, we present the structure of BepA and the results of a structure-guided mutagenesis strategy, which reveal the key residues required for activity that inform how all M48 metalloproteases function.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Metaloproteasas/química , Metaloproteasas/metabolismo , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Cristalografía por Rayos X , Proteínas de Escherichia coli/aislamiento & purificación , Metaloproteasas/aislamiento & purificación , Permeabilidad , Sensibilidad y Especificidad , Relación Estructura-Actividad
16.
Mol Microbiol ; 110(3): 335-356, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30044025

RESUMEN

Bacteria surround their cytoplasmic membrane with an essential, stress-bearing peptidoglycan (PG) layer consisting of glycan chains linked by short peptides into a mesh-like structure. Growing and dividing cells expand their PG layer using inner-membrane anchored PG synthases, including Penicillin-binding proteins (PBPs), which participate in dynamic protein complexes to facilitate cell wall growth. In Escherichia coli, and presumably other Gram-negative bacteria, growth of the mainly single layered PG is regulated by outer membrane-anchored lipoproteins. The lipoprotein LpoB is required to activate PBP1B, which is a major, bi-functional PG synthase with glycan chain polymerising (glycosyltransferase) and peptide cross-linking (transpeptidase) activities. In this work we show how the binding of LpoB to the regulatory UB2H domain of PBP1B activates both activities. Binding induces structural changes in the UB2H domain, which transduce to the two catalytic domains by distinct allosteric pathways. We also show how an additional regulator protein, CpoB, is able to selectively modulate the TPase activation by LpoB without interfering with GTase activation.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/química , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidoglicano/biosíntesis , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/química , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Regulación Alostérica , Proteínas de la Membrana/metabolismo , Unión Proteica , Conformación Proteica
17.
Mol Microbiol ; 87(5): 1074-87, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23387922

RESUMEN

The rod-shaped bacterium Escherichia coli grows by insertion of peptidoglycan into the lateral wall during cell elongation and synthesis of new poles during cell division. The monofunctional transpeptidases PBP2 and PBP3 are part of specialized protein complexes called elongasome and divisome, respectively, which catalyse peptidoglycan extension and maturation. Endogenous immunolabelled PBP2 localized in the cylindrical part of the cell as well as transiently at midcell. Using the novel image analysis tool Coli-Inspector to analyse protein localization as function of the bacterial cell age, we compared PBP2 localization with that of other E. coli cell elongation and division proteins including PBP3. Interestingly, the midcell localization of the two transpeptidases overlaps in time during the early period of divisome maturation. Försters Resonance Energy Transfer (FRET) experiments revealed an interaction between PBP2 and PBP3 when both are present at midcell. A decrease in the midcell diameter is visible after 40% of the division cycle indicating that the onset of new cell pole synthesis starts much earlier than previously identified by visual inspection. The data support a new model of the division cycle in which the elongasome and divisome interact to prepare for cell division.


Asunto(s)
División Celular , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citología , Escherichia coli/enzimología , Orgánulos/enzimología , Peptidil Transferasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Orgánulos/genética , Peptidil Transferasas/genética , Unión Proteica , Transporte de Proteínas
18.
mBio ; 15(4): e0032524, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38426748

RESUMEN

Gram-negative bacteria have a thin peptidoglycan layer between the cytoplasmic and outer membranes protecting the cell from osmotic challenges. Hydrolases of this structure are needed to cleave bonds to allow the newly synthesized peptidoglycan strands to be inserted by synthases. These enzymes need to be tightly regulated and their activities coordinated to prevent cell lysis. To better understand this process in Escherichia coli, we probed the genetic interactions of mrcA (encodes PBP1A) and mrcB (encodes PBP1B) with genes encoding peptidoglycan amidases and endopeptidases in envelope stress conditions. Our extensive genetic interaction network analysis revealed relatively few combinations of hydrolase gene deletions with reduced fitness in the absence of PBP1A or PBP1B, showing that none of the amidases or endopeptidases is strictly required for the functioning of one of the class A PBPs. This illustrates the robustness of the peptidoglycan growth mechanism. However, we discovered that the fitness of ∆mrcB cells is significantly reduced under high salt stress and in vitro activity assays suggest that this phenotype is caused by a reduced peptidoglycan synthesis activity of PBP1A at high salt concentration.IMPORTANCEEscherichia coli and many other bacteria have a surprisingly high number of peptidoglycan hydrolases. These enzymes function in concert with synthases to facilitate the expansion of the peptidoglycan sacculus under a range of growth and stress conditions. The synthases PBP1A and PBP1B both contribute to peptidoglycan expansion during cell division and growth. Our genetic interaction analysis revealed that these two penicillin-binding proteins (PBPs) do not need specific amidases, endopeptidases, or lytic transglycosylases for function. We show that PBP1A and PBP1B do not work equally well when cells encounter high salt stress and demonstrate that PBP1A alone cannot provide sufficient PG synthesis activity under this condition. These results show how the two class A PBPs and peptidoglycan hydrolases govern cell envelope integrity in E. coli in response to environmental challenges and particularly highlight the importance of PBP1B in maintaining cell fitness under high salt conditions.


Asunto(s)
Proteínas de Escherichia coli , Peptidoglicano Glicosiltransferasa , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Pared Celular/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo
19.
Nat Commun ; 15(1): 5740, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982040

RESUMEN

Mycobacterial glycolipids are important cell envelope structures that drive host-pathogen interactions. Arguably, the most important are lipoarabinomannan (LAM) and its precursor, lipomannan (LM), which are trafficked from the bacterium to the host via unknown mechanisms. Arabinomannan is thought to be a capsular derivative of these molecules, lacking a lipid anchor. However, the mechanism by which this material is generated has yet to be elucidated. Here, we describe the identification of a glycoside hydrolase family 76 enzyme that we term LamH (Rv0365c in Mycobacterium tuberculosis) which specifically cleaves α-1,6-mannoside linkages within LM and LAM, driving its export to the capsule releasing its phosphatidyl-myo-inositol mannoside lipid anchor. Unexpectedly, we found that the catalytic activity of this enzyme is important for efficient exit from stationary phase cultures, potentially implicating arabinomannan as a signal for growth phase transition. Finally, we demonstrate that LamH is important for M. tuberculosis survival in macrophages.


Asunto(s)
Proteínas Bacterianas , Glicósido Hidrolasas , Lipopolisacáridos , Macrófagos , Mananos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/crecimiento & desarrollo , Lipopolisacáridos/metabolismo , Mananos/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiología , Glicósido Hidrolasas/metabolismo , Proteínas Bacterianas/metabolismo , Animales , Ratones , Humanos , Fosfatidilinositoles/metabolismo , Cápsulas Bacterianas/metabolismo
20.
Mol Microbiol ; 85(1): 179-94, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22606933

RESUMEN

Growth of the bacterial cell wall peptidoglycan sacculus requires the co-ordinated activities of peptidoglycan synthases, hydrolases and cell morphogenesis proteins, but the details of these interactions are largely unknown. We now show that the Escherichia coli peptidoglycan glycosyltrasferase-transpeptidase PBP1A interacts with the cell elongation-specific transpeptidase PBP2 in vitro and in the cell. Cells lacking PBP1A are thinner and initiate cell division later in the cell cycle. PBP1A localizes mainly to the cylindrical wall of the cell, supporting its role in cell elongation. Our in vitro peptidoglycan synthesis assays provide novel insights into the cooperativity of peptidoglycan synthases with different activities. PBP2 stimulates the glycosyltransferase activity of PBP1A, and PBP1A and PBP2 cooperate to attach newly synthesized peptidoglycan to sacculi. PBP2 has peptidoglycan transpeptidase activity in the presence of active PBP1A. Our data also provide a possible explanation for the depletion of lipid II precursors in penicillin-treated cells.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidoglicano/biosíntesis , Pared Celular/metabolismo , Escherichia coli/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA