Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(4): 821-836.e13, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36750096

RESUMEN

The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.


Asunto(s)
Endocitosis , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad , Animales , Humanos , Ratones , Microscopía por Crioelectrón , Riñón/metabolismo , Ligandos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo
2.
Annu Rev Physiol ; 84: 533-558, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34780258

RESUMEN

Urinary tract infection (UTI) is the most common type of urogenital disease. UTI affects the urethra, bladder, ureter, and kidney. A total of 13.3% of women, 2.3% of men, and 3.4% of children in the United States will require treatment for UTI. Traditionally, bladder (cystitis) and kidney (pyelonephritis) infections are considered independently. However, both infections induce host defenses that are either shared or coordinated across the urinary tract. Here, we review the chemical and biophysical mechanisms of bacteriostasis, which limit the duration and severity of the illness. Urinary bacteria attempt to overcome each of these defenses, complicating description of the natural history of UTI.


Asunto(s)
Cistitis , Infecciones Urinarias , Sistema Urinario , Niño , Cistitis/complicaciones , Cistitis/microbiología , Femenino , Humanos , Riñón , Masculino
3.
Kidney Int ; 104(2): 236-238, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37479384

RESUMEN

Like most epithelial organs, the bladder and kidney can be directly accessed by bacteria evolved for invasion. Epithelia and immune cells attempt to stymie this infection with biophysical and chemical mechanisms. Goldspink et al. connected the Na+ gradient in the kidney medulla with an immune defense mounted by dead cells (namely, the explosive death of neutrophils and macrophages), resulting in extracellular DNA traps. The pathway from Na+ concentration to immune death is depicted.


Asunto(s)
Trampas Extracelulares , Inmunidad Innata , Macrófagos , Neutrófilos , Sistema Urinario , Sistema Urinario/inmunología , Neutrófilos/inmunología , Macrófagos/inmunología , Riñón , Sodio , Muerte Celular , Arginina Deiminasa Proteína-Tipo 4 , Humanos , Animales , Ratones , Infecciones Urinarias/inmunología , Infecciones Bacterianas/inmunología
4.
Nature ; 543(7645): 385-390, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28273060

RESUMEN

Bone has recently emerged as a pleiotropic endocrine organ that secretes at least two hormones, FGF23 and osteocalcin, which regulate kidney function and glucose homeostasis, respectively. These findings have raised the question of whether other bone-derived hormones exist and what their potential functions are. Here we identify, through molecular and genetic analyses in mice, lipocalin 2 (LCN2) as an osteoblast-enriched, secreted protein. Loss- and gain-of-function experiments in mice demonstrate that osteoblast-derived LCN2 maintains glucose homeostasis by inducing insulin secretion and improves glucose tolerance and insulin sensitivity. In addition, osteoblast-derived LCN2 inhibits food intake. LCN2 crosses the blood-brain barrier, binds to the melanocortin 4 receptor (MC4R) in the paraventricular and ventromedial neurons of the hypothalamus and activates an MC4R-dependent anorexigenic (appetite-suppressing) pathway. These results identify LCN2 as a bone-derived hormone with metabolic regulatory effects, which suppresses appetite in a MC4R-dependent manner, and show that the control of appetite is an endocrine function of bone.


Asunto(s)
Regulación del Apetito/fisiología , Huesos/metabolismo , Lipocalina 2/metabolismo , Receptor de Melanocortina Tipo 4/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Huesos/citología , AMP Cíclico/metabolismo , Ingestión de Alimentos/fisiología , Femenino , Factor-23 de Crecimiento de Fibroblastos , Glucosa/metabolismo , Homeostasis , Hipotálamo/citología , Hipotálamo/metabolismo , Insulina/metabolismo , Resistencia a la Insulina , Secreción de Insulina , Masculino , Ratones , Neuronas/metabolismo , Obesidad/metabolismo , Osteoblastos/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Delgadez/metabolismo
6.
N Engl J Med ; 380(20): 1918-1928, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31091373

RESUMEN

BACKGROUND: In the context of kidney transplantation, genomic incompatibilities between donor and recipient may lead to allosensitization against new antigens. We hypothesized that recessive inheritance of gene-disrupting variants may represent a risk factor for allograft rejection. METHODS: We performed a two-stage genetic association study of kidney allograft rejection. In the first stage, we performed a recessive association screen of 50 common gene-intersecting deletion polymorphisms in a cohort of kidney transplant recipients. In the second stage, we replicated our findings in three independent cohorts of donor-recipient pairs. We defined genomic collision as a specific donor-recipient genotype combination in which a recipient who was homozygous for a gene-intersecting deletion received a transplant from a nonhomozygous donor. Identification of alloantibodies was performed with the use of protein arrays, enzyme-linked immunosorbent assays, and Western blot analyses. RESULTS: In the discovery cohort, which included 705 recipients, we found a significant association with allograft rejection at the LIMS1 locus represented by rs893403 (hazard ratio with the risk genotype vs. nonrisk genotypes, 1.84; 95% confidence interval [CI], 1.35 to 2.50; P = 9.8×10-5). This effect was replicated under the genomic-collision model in three independent cohorts involving a total of 2004 donor-recipient pairs (hazard ratio, 1.55; 95% CI, 1.25 to 1.93; P = 6.5×10-5). In the combined analysis (discovery cohort plus replication cohorts), the risk genotype was associated with a higher risk of rejection than the nonrisk genotype (hazard ratio, 1.63; 95% CI, 1.37 to 1.95; P = 4.7×10-8). We identified a specific antibody response against LIMS1, a kidney-expressed protein encoded within the collision locus. The response involved predominantly IgG2 and IgG3 antibody subclasses. CONCLUSIONS: We found that the LIMS1 locus appeared to encode a minor histocompatibility antigen. Genomic collision at this locus was associated with rejection of the kidney allograft and with production of anti-LIMS1 IgG2 and IgG3. (Funded by the Columbia University Transplant Center and others.).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Variaciones en el Número de Copia de ADN , Rechazo de Injerto/genética , Trasplante de Riñón , Proteínas con Dominio LIM/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Estudios de Cohortes , Estudios de Asociación Genética , Genotipo , Antígenos HLA/genética , Prueba de Histocompatibilidad , Humanos , Inmunoglobulina G/sangre , Proteínas con Dominio LIM/inmunología , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Polimorfismo de Nucleótido Simple , Donantes de Tejidos
7.
J Am Soc Nephrol ; 32(11): 2958-2969, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34670811

RESUMEN

BACKGROUND: The long-term outcome of COVID-19-associated collapsing glomerulopathy is unknown. METHODS: We retrospectively identified 76 native kidney biopsies from patients with history of COVID-19 between March 2020 and April 2021. Presenting and outcome data were obtained for all 23 patients with collapsing glomerulopathy and for seven patients with noncollapsing podocytopathies. We performed APOL1 genotyping by Sanger sequencing, immunostaining for spike and nucleocapsid proteins, and in situ hybridization for SARS-CoV-2. RESULTS: The 23 patients with COVID-19-associated collapsing glomerulopathy were median age 57 years (range, 35-72), included 16 men, and were predominantly (91%) Black. Severity of COVID-19 was mild or moderate in most (77%) patients. All but one patient presented with AKI, 17 had nephrotic-range proteinuria, and six had nephrotic syndrome. Fourteen (61%) patients required dialysis at presentation. Among 17 patients genotyped, 16 (94%) were high-risk APOL1. Among 22 (96%) patients with median follow-up at 155 days (range, 30-412), 11 (50%) received treatment for COVID-19, and eight (36%) received glucocorticoid therapy for podocytopathy. At follow-up, 19 (86%) patients were alive, and 15 (68%) were dialysis free, including seven of 14 who initially required dialysis. The dialysis-free patients included 64% (seven of 11) of those treated for COVID-19 and 75% (six of eight) of those treated with glucocorticoids for podocytopathy. Overall, 36% achieved partial remission of proteinuria, 32% had no remission, and 32% reached combined end points of ESKD or death. Viral infection of the kidney was not detected. CONCLUSIONS: Half of 14 patients with COVID-19-associated collapsing glomerulopathy requiring dialysis achieved dialysis independence, but the long-term prognosis of residual proteinuric CKD remains guarded, indicating a need for more effective therapy.


Asunto(s)
COVID-19/complicaciones , Glomérulos Renales/patología , Podocitos/patología , Insuficiencia Renal/patología , Insuficiencia Renal/virología , Adulto , Anciano , COVID-19/patología , COVID-19/terapia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recuperación de la Función , Diálisis Renal , Insuficiencia Renal/terapia , Estudios Retrospectivos , Resultado del Tratamiento
8.
J Biol Chem ; 295(32): 11002-11020, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32518166

RESUMEN

Mitochondrial iron import is essential for iron-sulfur cluster formation and heme biosynthesis. Two nuclear-encoded vertebrate mitochondrial high-affinity iron importers, mitoferrin1 (Mfrn1) and Mfrn2, have been identified in mammals. In mice, the gene encoding Mfrn1, solute carrier family 25 member 37 (Slc25a37), is highly expressed in sites of erythropoiesis, and whole-body Slc25a37 deletion leads to lethality. Here, we report that mice with a deletion of Slc25a28 (encoding Mfrn2) are born at expected Mendelian ratios, but show decreased male fertility due to reduced sperm numbers and sperm motility. Mfrn2-/- mice placed on a low-iron diet exhibited reduced mitochondrial manganese, cobalt, and zinc levels, but not reduced iron. Hepatocyte-specific loss of Slc25a37 (encoding Mfrn1) in Mfrn2-/- mice did not affect animal viability, but resulted in a 40% reduction in mitochondrial iron and reduced levels of oxidative phosphorylation proteins. Placing animals on a low-iron diet exaggerated the reduction in mitochondrial iron observed in liver-specific Mfrn1/2-knockout animals. Mfrn1-/-/Mfrn2-/- bone marrow-derived macrophages or skin fibroblasts in vitro were unable to proliferate, and overexpression of Mfrn1-GFP or Mfrn2-GFP prevented this proliferation defect. Loss of both mitoferrins in hepatocytes dramatically reduced regeneration in the adult mouse liver, further supporting the notion that both mitoferrins transport iron and that their absence limits proliferative capacity of mammalian cells. We conclude that Mfrn1 and Mfrn2 contribute to mitochondrial iron homeostasis and are required for high-affinity iron import during active proliferation of mammalian cells.


Asunto(s)
Proteínas de Transporte de Catión/fisiología , Proliferación Celular/fisiología , Regeneración Hepática/fisiología , Proteínas de Transporte de Membrana/fisiología , Animales , Homeostasis , Hierro/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Hepáticas/metabolismo
9.
Am J Physiol Renal Physiol ; 320(1): F31-F46, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33135480

RESUMEN

Bacterial infection is one known etiology of prostatic inflammation. Prostatic inflammation is associated with prostatic collagen accumulation and both are linked to progressive lower urinary tract symptoms in men. We characterized a model of prostatic inflammation using transurethral instillations of Escherichia coli UTI89 in C57BL/6J male mice with the goal of determining the optimal instillation conditions, understanding the impact of instillation conditions on urinary physiology, and identifying ideal prostatic lobes and collagen 1a1 prostatic cell types for further analysis. The smallest instillation volume tested (50 µL) distributed exclusively to the bladder, 100- and 200-µL volumes distributed to the bladder and prostate, and a 500-µL volume distributed to the bladder, prostate, and ureter. A threshold optical density of 0.4 E. coli UTI89 in the instillation fluid was necessary for significant (P < 0.05) prostate colonization. E. coli UTI89 infection resulted in a low frequency, high volume spontaneous voiding pattern. This phenotype was due to exposure to E. coli UTI89, not catheterization alone, and was minimally altered by a 50-µL increase in instillation volume and doubling of E. coli concentration. Prostate inflammation was isolated to the dorsal prostate and was accompanied by increased collagen density. This was partnered with increased density of protein tyrosine phosphatase receptor type C+, procollagen type I-α1+ copositive cells and decreased density of α2-smooth muscle actin+, procollagen type I-α1+ copositive cells. Overall, we determined that this model is effective in altering urinary phenotype and producing prostatic inflammation and collagen accumulation in mice.


Asunto(s)
Colágeno Tipo I/metabolismo , Infecciones por Escherichia coli/microbiología , Procolágeno/metabolismo , Próstata/microbiología , Prostatitis/microbiología , Escherichia coli Uropatógena/patogenicidad , Actinas/metabolismo , Animales , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Infecciones por Escherichia coli/complicaciones , Antígenos Comunes de Leucocito/metabolismo , Masculino , Ratones Endogámicos C57BL , Próstata/metabolismo , Próstata/patología , Prostatitis/metabolismo , Prostatitis/patología , Técnicas de Cultivo de Tejidos
10.
Kidney Int ; 99(3): 498-510, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33637194

RESUMEN

Chronic kidney disease (CKD) and acute kidney injury (AKI) are common, heterogeneous, and morbid diseases. Mechanistic characterization of CKD and AKI in patients may facilitate a precision-medicine approach to prevention, diagnosis, and treatment. The Kidney Precision Medicine Project aims to ethically and safely obtain kidney biopsies from participants with CKD or AKI, create a reference kidney atlas, and characterize disease subgroups to stratify patients based on molecular features of disease, clinical characteristics, and associated outcomes. An additional aim is to identify critical cells, pathways, and targets for novel therapies and preventive strategies. This project is a multicenter prospective cohort study of adults with CKD or AKI who undergo a protocol kidney biopsy for research purposes. This investigation focuses on kidney diseases that are most prevalent and therefore substantially burden the public health, including CKD attributed to diabetes or hypertension and AKI attributed to ischemic and toxic injuries. Reference kidney tissues (for example, living-donor kidney biopsies) will also be evaluated. Traditional and digital pathology will be combined with transcriptomic, proteomic, and metabolomic analysis of the kidney tissue as well as deep clinical phenotyping for supervised and unsupervised subgroup analysis and systems biology analysis. Participants will be followed prospectively for 10 years to ascertain clinical outcomes. Cell types, locations, and functions will be characterized in health and disease in an open, searchable, online kidney tissue atlas. All data from the Kidney Precision Medicine Project will be made readily available for broad use by scientists, clinicians, and patients.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/epidemiología , Lesión Renal Aguda/terapia , Adulto , Humanos , Riñón , Medicina de Precisión , Estudios Prospectivos , Proteómica , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/epidemiología , Insuficiencia Renal Crónica/terapia
11.
Nephrol Dial Transplant ; 36(2): 237-246, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33097957

RESUMEN

BACKGROUND: An underlying monogenic cause of early-onset chronic kidney disease (CKD) can be detected in ∼20% of individuals. For many etiologies of CKD manifesting before 25 years of age, >200 monogenic causative genes have been identified to date, leading to the elucidation of mechanisms of renal pathogenesis. METHODS: In 51 families with echogenic kidneys and CKD, we performed whole-exome sequencing to identify novel monogenic causes of CKD. RESULTS: We discovered a homozygous truncating mutation in the transcription factor gene transcription factor CP2-like 1 (TFCP2L1) in an Arabic patient of consanguineous descent. The patient developed CKD by the age of 2 months and had episodes of severe hypochloremic, hyponatremic and hypokalemic alkalosis, seizures, developmental delay and hypotonia together with cataracts. We found that TFCP2L1 was localized throughout kidney development particularly in the distal nephron. Interestingly, TFCP2L1 induced the growth and development of renal tubules from rat mesenchymal cells. Conversely, the deletion of TFCP2L1 in mice was previously shown to lead to reduced expression of renal cell markers including ion transporters and cell identity proteins expressed in different segments of the distal nephron. TFCP2L1 localized to the nucleus in HEK293T cells only upon coexpression with its paralog upstream-binding protein 1 (UBP1). A TFCP2L1 mutant complementary DNA (cDNA) clone that represented the patient's mutation failed to form homo- and heterodimers with UBP1, an essential step for its transcriptional activity. CONCLUSION: Here, we identified a loss-of-function TFCP2L1 mutation as a potential novel cause of CKD in childhood accompanied by a salt-losing tubulopathy.


Asunto(s)
Transición Epitelial-Mesenquimal , Enfermedades Renales/etiología , Mutación , Proteínas Represoras/genética , Animales , Niño , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Células HEK293 , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Ratones , Ratones Noqueados , Ratas , Proteínas Represoras/metabolismo , Análisis de la Célula Individual , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuenciación del Exoma
12.
J Am Soc Nephrol ; 31(9): 2158-2167, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32727719

RESUMEN

BACKGROUND: AKI is common among hospitalized patients with coronavirus disease 2019 (COVID-19) and is an independent risk factor for mortality. Although there are numerous potential mechanisms underlying COVID-19-associated AKI, our current knowledge of kidney pathologic findings in COVID-19 is limited. METHODS: We examined the postmortem kidneys from 42 patients who died of COVID-19. We reviewed light microscopy findings in all autopsies and performed immunofluorescence, electron microscopy, and in situ hybridization studies for SARS-CoV-2 on a subset of samples. RESULTS: The cohort had a median age of 71.5 years (range, 38-97 years); 69% were men, 57% were Hispanic, and 73% had a history of hypertension. Among patients with available data, AKI developed in 31 of 33 patients (94%), including 6 with AKI stage 1, 9 with stage 2, and 16 with stage 3. The predominant finding correlating with AKI was acute tubular injury. However, the degree of acute tubular injury was often less severe than predicted for the degree of AKI, suggesting a role for hemodynamic factors, such as aggressive fluid management. Background changes of hypertensive arterionephrosclerosis and diabetic glomerulosclerosis were frequent but typically mild. We identified focal kidney fibrin thrombi in 6 of 42 (14%) autopsies. A single Black patient had collapsing FSGS. Immunofluorescence and electron microscopy were largely unrevealing, and in situ hybridization for SARS-CoV-2 showed no definitive positivity. CONCLUSIONS: Among a cohort of 42 patients dying with COVID-19, autopsy histologic evaluation revealed acute tubular injury, which was typically mild relative to the degree of creatinine elevation. These findings suggest potential for reversibility upon resolution of SARS-CoV-2 infection.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/patología , Riñón/patología , Neumonía Viral/patología , Lesión Renal Aguda/patología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , COVID-19 , Femenino , Humanos , Riñón/ultraestructura , Túbulos Renales/patología , Masculino , Persona de Mediana Edad , Pandemias , SARS-CoV-2
13.
J Am Soc Nephrol ; 31(9): 1959-1968, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32680910

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is thought to cause kidney injury by a variety of mechanisms. To date, pathologic analyses have been limited to patient reports and autopsy series. METHODS: We evaluated biopsy samples of native and allograft kidneys from patients with COVID-19 at a single center in New York City between March and June of 2020. We also used immunohistochemistry, in situ hybridization, and electron microscopy to examine this tissue for presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). RESULTS: The study group included 17 patients with COVID-19 (12 men, 12 black; median age of 54 years). Sixteen patients had comorbidities, including hypertension, obesity, diabetes, malignancy, or a kidney or heart allograft. Nine patients developed COVID-19 pneumonia. Fifteen patients (88%) presented with AKI; nine had nephrotic-range proteinuria. Among 14 patients with a native kidney biopsy, 5 were diagnosed with collapsing glomerulopathy, 1 was diagnosed with minimal change disease, 2 were diagnosed with membranous glomerulopathy, 1 was diagnosed with crescentic transformation of lupus nephritis, 1 was diagnosed with anti-GBM nephritis, and 4 were diagnosed with isolated acute tubular injury. The three allograft specimens showed grade 2A acute T cell-mediated rejection, cortical infarction, or acute tubular injury. Genotyping of three patients with collapsing glomerulopathy and the patient with minimal change disease revealed that all four patients had APOL1 high-risk gene variants. We found no definitive evidence of SARS-CoV-2 in kidney cells. Biopsy diagnosis informed treatment and prognosis in all patients. CONCLUSIONS: Patients with COVID-19 develop a wide spectrum of glomerular and tubular diseases. Our findings provide evidence against direct viral infection of the kidneys as the major pathomechanism for COVID-19-related kidney injury and implicate cytokine-mediated effects and heightened adaptive immune responses.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/patología , Riñón/patología , Neumonía Viral/patología , Adulto , Anciano , Betacoronavirus/aislamiento & purificación , Biopsia , COVID-19 , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/inmunología , Femenino , Humanos , Riñón/ultraestructura , Riñón/virología , Enfermedades Renales/patología , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/complicaciones , Neumonía Viral/inmunología , SARS-CoV-2
14.
Am J Physiol Renal Physiol ; 315(4): F1042-F1057, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29923765

RESUMEN

Renal iron recycling preserves filtered iron from urinary excretion. However, it remains debated whether ferroportin (FPN), the only known iron exporter, is functionally involved in renal iron recycling and whether renal iron recycling is required for systemic iron homeostasis. We deleted FPN in whole nephrons by use of a Nestin-Cre and in the distal nephrons and collecting ducts, using a Ksp-Cre, and investigated its impacts on renal iron recycling and systemic iron homeostasis. FPN deletion by Nestin-Cre, but not by Ksp-Cre, caused excess iron retention and increased ferritin heavy chain (FTH1) specifically in the proximal tubules and resulted in the reduction of serum and hepatic iron. The systemic iron redistribution was aggravated, resulting in anemia and the marked downregulation of hepatic hepcidin in elderly FPN knockout (KO)/Nestin-Cre mice. Similarly, in iron-deficient FPN KO/Nestin-Cre mice, the renal iron retention worsened anemia with the activation of the erythropoietin-erythroferrone-hepcidin pathway and the downregulation of hepatic hepcidin. Hence, FPN likely located at the basolateral membrane of the proximal tubules to export iron into the circulation and was required for renal iron recycling and systemic iron homeostasis particularly in elderly and iron-deficient mice. Moreover, FPN deletion in the proximal tubules alleviated ischemic acute kidney injury, possibly by upregulating FTH1 to limit catalytic iron and by priming antioxidant mechanisms, indicating that FPN could be deleterious in the pathophysiology of ischemic acute kidney injury (AKI) and thus may be a potential target for the prevention and mitigation of ischemic AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Proteínas de Transporte de Catión/metabolismo , Hierro/metabolismo , Isquemia/metabolismo , Animales , Hepcidinas/metabolismo , Homeostasis/fisiología , Riñón/metabolismo , Túbulos Renales Proximales/metabolismo , Hígado/metabolismo , Ratones Transgénicos , Bazo/metabolismo
15.
Development ; 142(6): 1125-36, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25758223

RESUMEN

Healthy placental development is essential for reproductive success; failure of the feto-maternal interface results in pre-eclampsia and intrauterine growth retardation. We found that grainyhead-like 2 (GRHL2), a CP2-type transcription factor, is highly expressed in chorionic trophoblast cells, including basal chorionic trophoblast (BCT) cells located at the chorioallantoic interface in murine placentas. Placentas from Grhl2-deficient mouse embryos displayed defects in BCT cell polarity and basement membrane integrity at the chorioallantoic interface, as well as a severe disruption of labyrinth branching morphogenesis. Selective Grhl2 inactivation only in epiblast-derived cells rescued all placental defects but phenocopied intraembryonic defects observed in global Grhl2 deficiency, implying the importance of Grhl2 activity in trophectoderm-derived cells. ChIP-seq identified 5282 GRHL2 binding sites in placental tissue. By integrating these data with placental gene expression profiles, we identified direct and indirect Grhl2 targets and found a marked enrichment of GRHL2 binding adjacent to genes downregulated in Grhl2(-/-) placentas, which encoded known regulators of placental development and epithelial morphogenesis. These genes included that encoding the serine protease inhibitor Kunitz type 1 (Spint1), which regulates BCT cell integrity and labyrinth formation. In human placenta, we found that human orthologs of murine GRHL2 and its targets displayed co-regulation and were expressed in trophoblast cells in a similar domain as in mouse placenta. Our data indicate that a conserved Grhl2-coordinated gene network controls trophoblast branching morphogenesis, thereby facilitating development of the site of feto-maternal exchange. This might have implications for syndromes related to placental dysfunction.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Redes Reguladoras de Genes/fisiología , Morfogénesis/fisiología , Placentación , Factores de Transcripción/metabolismo , Trofoblastos/fisiología , Sitios de Unión/genética , Inmunoprecipitación de Cromatina , Femenino , Técnica del Anticuerpo Fluorescente , Redes Reguladoras de Genes/genética , Humanos , Inmunohistoquímica , Análisis por Micromatrices , Microscopía Electrónica , Embarazo , Proteínas Inhibidoras de Proteinasas Secretoras/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
16.
J Am Soc Nephrol ; 28(6): 1729-1740, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28028135

RESUMEN

Two metrics, a rise in serum creatinine concentration and a decrease in urine output, are considered tantamount to the injury of the kidney tubule and the epithelial cells thereof (AKI). Yet neither criterion emphasizes the etiology or the pathogenetic heterogeneity of acute decreases in kidney excretory function. In fact, whether decreased excretory function due to contraction of the extracellular fluid volume (vAKI) or due to intrinsic kidney injury (iAKI) actually share pathogenesis and should be aggregated in the same diagnostic group remains an open question. To examine this possibility, we created mouse models of iAKI and vAKI that induced a similar increase in serum creatinine concentration. Using laser microdissection to isolate specific domains of the kidney, followed by RNA sequencing, we found that thousands of genes responded specifically to iAKI or to vAKI, but very few responded to both stimuli. In fact, the activated gene sets comprised different, functionally unrelated signal transduction pathways and were expressed in different regions of the kidney. Moreover, we identified distinctive gene expression patterns in human urine as potential biomarkers of either iAKI or vAKI, but not both. Hence, iAKI and vAKI are biologically unrelated, suggesting that molecular analysis should clarify our current definitions of acute changes in kidney excretory function.


Asunto(s)
Lesión Renal Aguda/clasificación , Lesión Renal Aguda/genética , Transcriptoma , Animales , Femenino , Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL
17.
Pediatr Nephrol ; 32(6): 1077-1080, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28210838

RESUMEN

INTRODUCTION: Children with recurrent urinary tract infections (rUTI) often show no identifiable cause of their infections. Neutrophil gelatinase-associated lipocalin (NGAL) is known to be upregulated within the uroepithelium and kidney of patients with UTI and exhibits a localized bacteriostatic effect through iron chelation. We hypothesize that some patients with rUTI without an identifiable cause of their recurrent infections have locally deficient NGAL production. We therefore explored whether a lack of NGAL production may be a factor in the pathogenesis of rUTI. MATERIALS AND METHODS: Patients seen in the urology clinic for rUTI who were <21 years of age were enrolled. Patients were excluded if they had UTI at the time of enrollment, evidence of renal disease, decreased renal function, known anatomic abnormality of the genitourinary tract, or other reasons that predispose to UTI, such as neurogenic bladder, the need for intermittent catheterization, or unrepaired posterior urethral valves. Control patients were healthy children enrolled from the emergency department with no history of UTI or renal dysfunction, normal urinalysis at the time of enrollment, and presenting no diagnosis associated with increased NGAL levels, such as acute kidney injury or infection. NGAL was measured by immunoblot. RESULTS: Fifteen cases and controls were enrolled. Median urinary NGAL levels were significantly decreased in rUTI patients compared with controls [15 (14-29) ng/ml vs 30 (27-61) ng/ml; p = 0.002)] Although comparatively diminished, measurable NGAL levels were present in all patients with rUTI. CONCLUSIONS: Urinary NGAL is significantly decreased in patients with compared with patients without rUTI. These data suggest that some patients with rUTI may be predisposed to UTI because of a relative local deficiency in urinary NGAL production.


Asunto(s)
Riñón/metabolismo , Lipocalina 2/orina , Infecciones Urinarias/orina , Sistema Urinario/metabolismo , Urotelio/metabolismo , Adolescente , Biomarcadores/metabolismo , Biomarcadores/orina , Western Blotting , Niño , Preescolar , Susceptibilidad a Enfermedades/metabolismo , Susceptibilidad a Enfermedades/orina , Femenino , Humanos , Lipocalina 2/metabolismo , Masculino , Estudios Prospectivos , Recurrencia , Regulación hacia Arriba , Infecciones Urinarias/etiología
18.
Pediatr Res ; 78(1): 76-81, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25806716

RESUMEN

BACKGROUND: To assess the ability of urinary neutrophil gelatinase-associated lipocalin (UNGAL) to discriminate between culture-positive vs. culture-negative late-onset sepsis evaluations. METHODS: This is a prospective observational study of 136 neonates who underwent ≥1 sepsis evaluation at >72 h of age. Urine was obtained at the time of sepsis evaluation to measure UNGAL concentration. Using generalized estimating equations controlling for gender, gestational and postnatal age, acute kidney injury, and within-patient correlations, pair-wise contrasts between mean log UNGAL concentrations of infants with negative sepsis evaluations vs. culture-positive sepsis and presumed sepsis were assessed. Discrimination characteristics at several UNGAL cutoff concentrations were assessed using receiver-operating characteristic curves. RESULTS: The predicted mean log UNGAL values of culture-positive sepsis and presumed sepsis vs. negative sepsis evaluations differed significantly (P < 0.001 and P = 0.02, respectively). At a cutoff ≥ 50 ng/ml, UNGAL discriminated between culture-positive sepsis and culture-negative sepsis evaluations with sensitivity = 86%, specificity = 56%, positive predictive value = 41%, negative predictive value = 92%, and number needed to treat = 3. CONCLUSION: UNGAL is a noninvasive biomarker with high negative predictive value at the time of late-onset sepsis evaluation in neonates and could be a useful adjunct to traditional components of sepsis evaluations.


Asunto(s)
Proteínas de Fase Aguda/orina , Biomarcadores/orina , Lipocalinas/orina , Proteínas Proto-Oncogénicas/orina , Sepsis/orina , Lesión Renal Aguda/fisiopatología , Femenino , Edad Gestacional , Hospitalización , Humanos , Recién Nacido , Cuidado Intensivo Neonatal , Lipocalina 2 , Masculino , Valor Predictivo de las Pruebas , Estudios Prospectivos , Curva ROC , Sensibilidad y Especificidad , Sepsis/diagnóstico
19.
Clin Exp Nephrol ; 19(1): 99-106, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24599361

RESUMEN

BACKGROUND: Lipocalin 2 (LCN2 or neutrophil gelatinase-associated lipocalin) is a secretory protein discovered from neutrophils, which accumulates in the blood and urine during acute kidney injury (AKI) and in the blood by bacterial infection. Little is known about the tissue source and molecular forms of this protein under normal and pathophysiologic conditions. METHODS: By sandwich ELISA, serum and urinary LCN2 levels were measured in 36 patients with hematologic malignancies who transiently became neutropenic by stem cell transplantation (SCT). To evaluate contribution of neutrophil-derived LCN2 in the physiologic blood LCN2 concentrations, we examined CCAAT/enhancer-binding protein ε (C/EBPε) knockout mice, which lack mature neutrophils. RESULTS: In patients without AKI and bacterial infection, at 1 week after SCT, the median blood neutrophil counts became zero and serum LCN2 levels were decreased by 76 ± 6 % (p < 0.01), but urinary LCN2 levels were not altered. During neutropenic conditions, bacterial infection caused only a modest rise of serum LCN2 but AKI produced a marked rise of serum and urinary LCN2 levels. Serum LCN2 concentrations in C/EBPε knockout mice were reduced by 66 ± 11 % compared to wild-type mice (p < 0.05). Blood LCN2 existed predominantly in high molecular weight forms (>100 kDa), while urinary LCN2 was mainly in low molecular weight forms. CONCLUSION: Our findings suggest that neutrophils are the major source of circulating LCN2 in normal and infected conditions, whereas blood and urinary LCN2 mainly derive from the kidney during AKI, and that the molecular forms and regulation of blood and urinary LCN2 are clearly distinct.


Asunto(s)
Lesión Renal Aguda/sangre , Riñón/metabolismo , Lipocalinas/sangre , Neutrófilos/metabolismo , Proteínas Oncogénicas/sangre , Proteínas de Fase Aguda/orina , Animales , Infecciones Bacterianas/sangre , Infecciones Bacterianas/orina , Biomarcadores/sangre , Biomarcadores/orina , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/fisiología , Neoplasias Hematológicas/complicaciones , Neoplasias Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas , Humanos , Lipocalina 2 , Lipocalinas/orina , Ratones , Ratones Noqueados , Peso Molecular , Proteínas Oncogénicas/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA