Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Am J Hum Genet ; 106(4): 484-495, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32220290

RESUMEN

Glycosylphosphatidylinositol (GPI)-anchored proteins are critical for embryogenesis, neurogenesis, and cell signaling. Variants in several genes participating in GPI biosynthesis and processing lead to decreased cell surface presence of GPI-anchored proteins (GPI-APs) and cause inherited GPI deficiency disorders (IGDs). In this report, we describe 12 individuals from nine unrelated families with 10 different bi-allelic PIGK variants. PIGK encodes a component of the GPI transamidase complex, which attaches the GPI anchor to proteins. Clinical features found in most individuals include global developmental delay and/or intellectual disability, hypotonia, cerebellar ataxia, cerebellar atrophy, and facial dysmorphisms. The majority of the individuals have epilepsy. Two individuals have slightly decreased levels of serum alkaline phosphatase, while eight do not. Flow cytometric analysis of blood and fibroblasts from affected individuals showed decreased cell surface presence of GPI-APs. The overexpression of wild-type (WT) PIGK in fibroblasts rescued the levels of cell surface GPI-APs. In a knockout cell line, transfection with WT PIGK also rescued the GPI-AP levels, but transfection with the two tested mutant variants did not. Our study not only expands the clinical and known genetic spectrum of IGDs, but it also expands the genetic differential diagnosis for cerebellar atrophy. Given the fact that cerebellar atrophy is seen in other IGDs, flow cytometry for GPI-APs should be considered in the work-ups of individuals presenting this feature.


Asunto(s)
Aciltransferasas/genética , Moléculas de Adhesión Celular/genética , Enfermedades Cerebelosas/genética , Epilepsia/genética , Variación Genética/genética , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/genética , Anomalías Múltiples/genética , Alelos , Femenino , Humanos , Discapacidad Intelectual/genética , Masculino , Malformaciones del Sistema Nervioso/genética , Linaje , Síndrome
2.
Am J Hum Genet ; 103(4): 602-611, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30269814

RESUMEN

Inherited GPI deficiencies (IGDs) are a subset of congenital disorders of glycosylation that are increasingly recognized as a result of advances in whole-exome sequencing (WES) and whole-genome sequencing (WGS). IGDs cause a series of overlapping phenotypes consisting of seizures, dysmorphic features, multiple congenital malformations, and severe intellectual disability. We present a study of six individuals from three unrelated families in which WES or WGS identified bi-allelic phosphatidylinositol glycan class S (PIGS) biosynthesis mutations. Phenotypes included severe global developmental delay, seizures (partly responding to pyridoxine), hypotonia, weakness, ataxia, and dysmorphic facial features. Two of them had compound-heterozygous variants c.108G>A (p.Trp36∗) and c.101T>C (p.Leu34Pro), and two siblings of another family were homozygous for a deletion and insertion leading to p.Thr439_Lys451delinsArgLeuLeu. The third family had two fetuses with multiple joint contractures consistent with fetal akinesia. They were compound heterozygous for c.923A>G (p.Glu308Gly) and c.468+1G>C, a splicing mutation. Flow-cytometry analyses demonstrated that the individuals with PIGS mutations show a GPI-AP deficiency profile. Expression of the p.Trp36∗ variant in PIGS-deficient HEK293 cells revealed only partial restoration of cell-surface GPI-APs. In terms of both biochemistry and phenotype, loss of function of PIGS shares features with PIGT deficiency and other IGDs. This study contributes to the understanding of the GPI-AP biosynthesis pathway by describing the consequences of PIGS disruption in humans and extending the family of IGDs.


Asunto(s)
Anomalías Múltiples/genética , Aciltransferasas/genética , Artrogriposis/genética , Ataxia Cerebelosa/genética , Epilepsia Generalizada/genética , Línea Celular , Niño , Preescolar , Discapacidades del Desarrollo/genética , Femenino , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Masculino , Hipotonía Muscular/genética , Mutación , Malformaciones del Sistema Nervioso/genética , Linaje , Convulsiones/genética , Síndrome , Secuenciación del Exoma/métodos
3.
J Inherit Metab Dis ; 43(6): 1321-1332, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32588908

RESUMEN

We investigated seven children from six families to expand the phenotypic spectrum associated with an early infantile epileptic encephalopathy caused by biallelic pathogenic variants in the phosphatidylinositol glycan anchor biosynthesis class Q (PIGQ) gene. The affected children were all identified by clinical or research exome sequencing. Clinical data, including EEGs and MRIs, was comprehensively reviewed and flow cytometry and transfection experiments were performed to investigate PIGQ function. Pathogenic biallelic PIGQ variants were associated with increased mortality. Epileptic seizures, axial hypotonia, developmental delay and multiple congenital anomalies were consistently observed. Seizure onset occurred between 2.5 months and 7 months of age and varied from treatable seizures to recurrent episodes of status epilepticus. Gastrointestinal issues were common and severe, two affected individuals had midgut volvulus requiring surgical correction. Cardiac anomalies including arrythmias were observed. Flow cytometry using granulocytes and fibroblasts from affected individuals showed reduced expression of glycosylphosphatidylinositol (GPI)-anchored proteins. Transfection of wildtype PIGQ cDNA into patient fibroblasts rescued this phenotype. We expand the phenotypic spectrum of PIGQ-related disease and provide the first functional evidence in human cells of defective GPI-anchoring due to pathogenic variants in PIGQ.


Asunto(s)
Anomalías Múltiples/genética , Proteínas de la Membrana/genética , Hipotonía Muscular/genética , Convulsiones/genética , Espasmos Infantiles/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/metabolismo , Niño , Preescolar , Resultado Fatal , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Hipotonía Muscular/patología , Mutación Missense , Fenotipo , Convulsiones/diagnóstico , Convulsiones/metabolismo , Espasmos Infantiles/metabolismo , Espasmos Infantiles/patología , Secuenciación del Exoma
4.
Clin Genet ; 95(1): 112-121, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30054924

RESUMEN

It is estimated that 0.5% of all mammalian proteins have a glycosylphosphatidylinositol (GPI)-anchor. GPI-anchored proteins (GPI-APs) play key roles, particularly in embryogenesis, neurogenesis, immune response and signal transduction. Due to their involvement in many pathways and developmental events, defects in the genes involved in their synthesis and processing can result in a variety of genetic disorders for which affected individuals display a wide spectrum of features. We compiled the clinical characteristics of 202 individuals with mutations in the GPI biosynthesis and processing pathway through a review of the literature. This review has allowed us to compare the characteristics and the severity of the phenotypes associated with different genes as well as highlight features that are prominent for each. Certain combinations, such as seizures with aplastic/hypoplastic nails or abnormal alkaline phosphatase levels suggest an inherited GPI deficiency, and our review of all clinical findings may orient the management of inherited GPI deficiencies.


Asunto(s)
Proteínas Ligadas a GPI/genética , Glicosilfosfatidilinositoles/deficiencia , Glicosilfosfatidilinositoles/genética , Convulsiones/genética , Anomalías Múltiples/epidemiología , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Glicosilfosfatidilinositoles/metabolismo , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Hipotonía Muscular/epidemiología , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Mutación , Convulsiones/epidemiología , Convulsiones/patología
6.
Eur J Med Genet ; 63(4): 103822, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31805394

RESUMEN

We report that recessive inheritance of a post-GPI attachment to proteins 2 (PGAP2) gene variant results in the hyperphosphatasia with neurologic deficit (HPMRS) phenotype described by Mabry et al., in 1970. HPMRS, or Mabry syndrome, is now known to be one of 21 inherited glycosylphosphatidylinositol (GPI) deficiencies (IGDs), or GPI biosynthesis defects (GPIBDs). Bi-allelic mutations in at least six genes result in HPMRS phenotypes. Disruption of four phosphatidylinositol glycan (PIG) biosynthesis genes, PIGV, PIGO, PIGW and PIGY, expressed in the endoplasmic reticulum, result in HPMRS 1, 2, 5 and 6; disruption of the PGAP2 and PGAP3 genes, necessary for stabilizing the association of GPI anchored proteins (AP) with the Golgi membrane, result in HPMRS 3 and 4. We used exome sequencing to identify a novel homozygous missense PGAP2 variant NM_014489.3:c.881C > T, p.Thr294Met in two index patients and targeted sequencing to identify this variant in an unrelated patient. Rescue assays were conducted in two PGAP2 deficient cell lines, PGAP2 KO cells generated by CRISPR/Cas9 and PGAP2 deficient CHO cells, in order to examine the pathogenicity of the PGAP2 variant. First, we used the CHO rescue assay to establish that the wild type PGAP2 isoform 1, translated from transcript 1, is less active than the wild type PGAP2 isoform 8, translated from transcript 12 (alternatively spliced to omit exon 3). As a result, in our variant rescue assays, we used the more active NM_001256240.2:c.698C > T, p.Thr233Met isoform 8 instead of NM_014489.3:c.881C > T, p.Thr294Met isoform 1. Flow cytometric analysis showed that restoration of cell surface CD59 and CD55 with variant PGAP2 isoform 8, driven by the weak (pTA FLAG) promoter, was less efficient than wild type isoform 8. Therefore, we conclude that recessive inheritance of c.881C > T PGAP2, expressed as the hypomorphic PGAP2 c.698C > T, p.Thr233Met isoform 8, results in prototypical Mabry phenotype, HPMRS3 (GPIBD 8 [MIM: 614207]). This study highlights the need for long-term follow up of individuals with rare diseases in order to ensure that they benefit from innovations in diagnosis and treatment.


Asunto(s)
Anomalías Múltiples/genética , Discapacidad Intelectual/genética , Proteínas Nucleares/genética , Trastornos del Metabolismo del Fósforo/genética , Adolescente , Adulto , Animales , Células CHO , Niño , Cricetulus , Femenino , Glicosilfosfatidilinositoles/deficiencia , Células HEK293 , Humanos , Masculino , Persona de Mediana Edad , Mutación Missense , Proteínas Nucleares/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA