Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cancer Ther ; 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38670552

RESUMEN

Delta-like ligand 3 (DLL3) is expressed in more than 70% of small cell lung cancers (SCLCs) and other neuroendocrine-derived tumor types. SCLC is highly aggressive and limited therapeutic options lead to poor prognosis for patients. HPN328 is a tri-specific T cell activating construct (TriTAC) consisting of three binding domains: a CD3 binder for T cell engagement, an albumin binder for half-life extension, and a DLL3 binder for tumor cell engagement. In vitro assays, rodent models and non-human primates were used to assess the activity of HPN328. HPN328 induces potent dose-dependent killing of DLL3-expressing SCLC cell lines in vitro concomitant with T cell activation and cytokine release. In an NCI-H82 xenograft model with established tumors, HPN328 treatment led to T cell recruitment and anti-tumor activity. In an immunocompetent mouse model expressing a human CD3ε epitope, mice previously treated with HPN328 withstood tumor rechallenge, demonstrating long-term anti-tumor immunity. When repeat doses were administered to cynomolgus monkeys, HPN328 was well tolerated up to 10 mg/kg. Pharmacodynamic changes, such as transient cytokine elevation, were observed, consistent with the expected mechanism of action of T cell engagers. HPN328 exhibited linear pharmacokinetic in the given dose range with a serum half-life of 78 to 187 hours, supporting weekly or less frequent administration of HPN328 in humans. Preclinical and nonclinical characterization suggests that HPN328 is a highly efficacious, safe, and novel therapeutic candidate. A phase 1/2 clinical trial is currently underway testing safety and efficacy in patients with DLL3 expressing malignancies.

2.
Mol Cancer Ther ; 20(1): 109-120, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33203731

RESUMEN

T cells have a unique capability to eliminate cancer cells and fight malignancies. Cancer cells have adopted multiple immune evasion mechanisms aimed at inhibiting T cells. Dramatically improved patient outcomes have been achieved with therapies genetically reprogramming T cells, blocking T-cell inhibition by cancer cells, or transiently connecting T cells with cancer cells for redirected lysis. This last modality is based on antibody constructs that bind a surface antigen on cancer cells and an invariant component of the T-cell receptor. Although high response rates were observed with T-cell engagers specific for CD19, CD20, or BCMA in patients with hematologic cancers, the treatment of solid tumors has been less successful. Here, we developed and characterized a novel T-cell engager format, called TriTAC (for Trispecific T-cell Activating Construct). TriTACs are engineered with features to improve patient safety and solid tumor activity, including high stability, small size, flexible linkers, long serum half-life, and highly specific and potent redirected lysis. The present study establishes the structure/activity relationship of TriTACs and describes the development of HPN424, a PSMA- (FOLH1-) targeting TriTAC in clinical development for patients with metastatic castration-resistant prostate cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Linfocitos T/metabolismo , Albúminas/farmacología , Animales , Antineoplásicos/sangre , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Complejo CD3/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Semivida , Humanos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Macaca fascicularis , Ratones Endogámicos NOD , Ratones SCID , Neoplasias/patología , Antígeno Prostático Específico/metabolismo , Linfocitos T/efectos de los fármacos
3.
Mol Cancer Ther ; 13(5): 1181-93, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24623736

RESUMEN

There is no effective therapy for breast cancer that has spread to the brain. A major roadblock is the blood-brain barrier (BBB), which prevents the usual breast cancer drugs from effectively reaching intracranial metastases. The alkylating agent temozolomide (TMZ) is able to penetrate the BBB and has become the gold standard for chemotherapeutic treatment of glioblastoma. However, when it was tested in clinical trials for activity against brain metastases of breast cancer, the results were mixed and ranged from "encouraging activity" to "no objective responses." In an effort to generate an agent with greater activity against intracranial breast metastases, we synthesized a TMZ analog where the natural product perillyl alcohol (POH) was covalently linked to TMZ's amide functionality. The resulting novel compound, called TMZ-POH (T-P), displayed greatly increased anticancer activity in a variety of breast cancer cell lines, inclusive of TMZ-resistant ones. It caused DNA damage and cell death much more efficiently than its parental compound TMZ, because linkage with POH increased its biologic half-life and thus provided greater opportunity for placement of cytotoxic DNA lesions. In an intracranial mouse tumor model with triple-negative breast cancer, T-P revealed considerably greater therapeutic efficacy than TMZ, where a single cycle of treatment extended median survival benefit from 6 days (in the case of TMZ) to 28 days. At the same time, T-P seemed to be well tolerated by the animals. Thus, T-P may have potential as a novel therapy for brain-targeted breast cancer metastases.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Dacarbazina/análogos & derivados , Monoterpenos/farmacología , Neoplasias de la Mama Triple Negativas/patología , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/mortalidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Dacarbazina/administración & dosificación , Dacarbazina/farmacología , Modelos Animales de Enfermedad , Combinación de Medicamentos , Resistencia a Antineoplásicos/genética , Humanos , Ratones , Monoterpenos/administración & dosificación , Temozolomida , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA