Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Neurobiol Dis ; 37(3): 574-80, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19914377

RESUMEN

Exposure to environmental lead (Pb) is a mild risk factor for amyotrophic lateral sclerosis (ALS), a paralytic disease characterized by progressive degeneration of motor neurons. However, recent evidence has paradoxically linked higher Pb levels in ALS patients with longer survival. We investigated the effects of low-level Pb exposure on survival of mice expressing the ALS-linked superoxide dismutase-1 G93A mutation (SOD1(G93A)). SOD1(G93A) mice exposed to Pb showed longer survival and increased expression of VEGF in the ventral horn associated with reduced astrocytosis. Pretreatment of cultured SOD1(G93A) astrocytes with low, non toxic Pb concentrations upregulated VEGF expression and significantly abrogated motor neuron loss in coculture, an effect prevented by neutralizing antibodies to VEGF. The actions of Pb on astrocytes might explain its paradoxical slowing of disease progression in SOD1(G93A) mice and the improved survival of ALS patients. Understanding how Pb stimulates astrocytic VEGF production and reduces neuroinflammation may yield a new therapeutic approach for treating ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Astrocitos/efectos de los fármacos , Plomo/farmacología , Médula Espinal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/efectos de los fármacos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Anticuerpos Neutralizantes/farmacología , Astrocitos/metabolismo , Células Cultivadas , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Gliosis/tratamiento farmacológico , Gliosis/etiología , Gliosis/fisiopatología , Plomo/uso terapéutico , Ratones , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Degeneración Nerviosa/tratamiento farmacológico , Degeneración Nerviosa/etiología , Degeneración Nerviosa/fisiopatología , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Médula Espinal/citología , Médula Espinal/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Tasa de Supervivencia , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo
2.
J Neural Transm (Vienna) ; 117(8): 981-1000, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20552235

RESUMEN

Because microglial cells, the resident macrophages of the CNS, react to any lesion of the nervous system, they have for long been regarded as potential players in the pathogenesis of several neurodegenerative disorders including amyotrophic lateral sclerosis, the most common motor neuron disease in the adult. In recent years, this microglial reaction to motor neuron injury, in particular, and the innate immune response, in general, has been implicated in the progression of the disease, in mouse models of ALS. The mechanisms by which microglial cells influence motor neuron death in ALS are still largely unknown. Microglial activation increases over the course of the disease and is associated with an alteration in the production of toxic factors and also neurotrophic factors. Adding to the microglial/macrophage response to motor neuron degeneration, the adaptive immune system can likewise influence the disease process. Exploring these motor neuron-immune interactions could lead to a better understanding in the physiopathology of ALS to find new pathways to slow down motor neuron degeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral , Sistema Inmunológico/inmunología , Sistema Inmunológico/patología , Neuronas Motoras/inmunología , Esclerosis Amiotrófica Lateral/inmunología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Humanos , Macrófagos/fisiología , Linfocitos T/fisiología
3.
J Neurosci ; 28(1): 60-7, 2008 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-18171923

RESUMEN

Increased iron levels and iron-mediated oxidative stress play an important role in the pathogenesis of many neurodegenerative diseases. The finding that mutations in the ferritin light polypeptide (FTL) gene cause a neurodegenerative disease known as neuroferritinopathy or hereditary ferritinopathy (HF) provided a direct connection between abnormal brain iron storage and neurodegeneration. HF is characterized by a severe movement disorder and by the presence of nuclear and cytoplasmic ferritin inclusion bodies in glia and neurons throughout the CNS and in tissues of multiple organ systems. Here we report that the expression in transgenic mice of a human FTL cDNA carrying a thymidine and cytidine insertion at position 498 (FTL498-499InsTC) leads to the formation of nuclear and cytoplasmic ferritin inclusion bodies. As in HF, ferritin inclusions are seen in glia and neurons throughout the CNS as well as in cells of other organ systems. Our studies show histological, immunohistochemical, and biochemical similarities between ferritin inclusion bodies found in transgenic mice and in individuals with HF. Expression of the transgene in mice leads to a significant decrease in motor performance and a shorter life span, formation of ferritin inclusion bodies, misregulation of iron metabolism, accumulation of ubiquitinated proteins, and incorporation of elements of the proteasome into inclusions. This new transgenic mouse represents a relevant model of HF in which to study the pathways that lead to neurodegeneration in HF, to evaluate the role of iron mismanagement in neurodegenerative disorders, and to evaluate potential therapies for HF and related neurodegenerative diseases.


Asunto(s)
Ferritinas/genética , Expresión Génica/genética , Sobrecarga de Hierro/genética , Mutación/genética , Enfermedades Neurodegenerativas/genética , Animales , Apoferritinas , Conducta Animal , Encéfalo/patología , Encéfalo/ultraestructura , Modelos Animales de Enfermedad , Humanos , Hierro/metabolismo , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología , Sobrecarga de Hierro/fisiopatología , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Transmisión/métodos , Actividad Motora/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología
4.
J Neurochem ; 109(4): 1067-78, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19519778

RESUMEN

Insertional mutations in exon 4 of the ferritin light chain (FTL) gene are associated with hereditary ferritinopathy (HF) or neuroferritinopathy, an autosomal dominant neurodegenerative disease characterized by progressive impairment of motor and cognitive functions. To determine the pathogenic mechanisms by which mutations in FTL lead to neurodegeneration, we investigated iron metabolism and markers of oxidative stress in the brain of transgenic (Tg) mice that express the mutant human FTL498-499InsTC cDNA. Compared with wild-type mice, brain extracts from Tg (FTL-Tg) mice showed an increase in the cytoplasmic levels of both FTL and ferritin heavy chain polypeptides, a decrease in the protein and mRNA levels of transferrin receptor-1, and a significant increase in iron levels. Transgenic mice also showed the presence of markers for lipid peroxidation, protein carbonyls, and nitrone-protein adducts in the brain. However, gene expression analysis of iron management proteins in the liver of Tg mice indicates that the FTL-Tg mouse liver is iron deficient. Our data suggest that disruption of iron metabolism in the brain has a primary role in the process of neurodegeneration in HF and that the pathogenesis of HF is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron-induced ferritin aggregates in the brain.


Asunto(s)
Apoferritinas/genética , Apoferritinas/fisiología , Trastornos del Metabolismo del Hierro/genética , Trastornos del Metabolismo del Hierro/metabolismo , Hierro/metabolismo , Estrés Oxidativo/genética , Animales , Química Encefálica/fisiología , Ensayo de Cambio de Movilidad Electroforética , Exones/genética , Homeostasis/genética , Homeostasis/fisiología , Inmunohistoquímica , Peroxidación de Lípido/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas de Hierro no Heme/metabolismo
5.
Free Radic Biol Med ; 52(9): 1692-7, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22348978

RESUMEN

Intracellular inclusion bodies (IBs) containing ferritin and iron are hallmarks of hereditary ferritinopathy (HF). This neurodegenerative disease is caused by mutations in the coding sequence of the ferritin light chain (FTL) gene that generate FTL polypeptides with a C-terminus that is altered in amino acid sequence and length. Previous studies of ferritin formed with p.Phe167SerfsX26 mutant FTL (Mt-FTL) subunits found disordered 4-fold pores, iron mishandling, and proaggregative behavior, as well as a general increase in cellular oxidative stress when expressed in vivo. Herein, we demonstrate that Mt-FTL is also a target of iron-catalyzed oxidative damage in vitro and in vivo. Incubation of recombinant Mt-FTL ferritin with physiological concentrations of iron and ascorbate resulted in shell structural disruption and polypeptide cleavage not seen with the wild type, as well as a 2.5-fold increase in carbonyl group formation. However, Mt-FTL shell disruption and polypeptide cleavage were completely inhibited by the addition of the radical trap 5,5-dimethyl-1-pyrroline N-oxide. These results indicate an enhanced propensity of Mt-FTL toward free radical-induced oxidative damage in vitro. We also found evidence of extensive carbonylation in IBs from a patient with HF together with isolation of a C-terminal Mt-FTL fragment, which are both indicative of oxidative ferritin damage in vivo. Our data demonstrate an enhanced propensity of mutant ferritin to undergo iron-catalyzed oxidative damage and support this as a mechanism causing disruption of ferritin structure and iron mishandling that contribute to the pathology of HF.


Asunto(s)
Apoferritinas/fisiología , Enfermedades Neurodegenerativas/fisiopatología , Estrés Oxidativo , Apoferritinas/genética , Western Blotting , Encéfalo/patología , Electroforesis en Gel de Poliacrilamida , Humanos , Enfermedades Neurodegenerativas/patología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Mol Neurodegener ; 5: 50, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21067605

RESUMEN

BACKGROUND: Nucleotide duplications in exon 4 of the ferritin light polypeptide (FTL) gene cause the autosomal dominant neurodegenerative disease neuroferritinopathy or hereditary ferritinopathy (HF). Pathologic examination of patients with HF has shown abnormal ferritin and iron accumulation in neurons and glia in the central nervous system (CNS) as well as in cells of other organ systems, including skin fibroblasts. To gain some understanding on the molecular basis of HF, we characterized iron metabolism in primary cultures of human skin fibroblasts from an individual with the FTL c.497_498dupTC mutation. RESULTS: Compared to normal controls, HF fibroblasts showed abnormal iron metabolism consisting of increased levels of ferritin polypeptides, divalent metal transporter 1, basal iron content and reactive oxygen species, and decreased levels of transferrin receptor-1 and IRE-IRP binding activity. CONCLUSIONS: Our data indicates that HF fibroblasts replicate the abnormal iron metabolism observed in the CNS of patients with HF. We propose that HF fibroblasts are a unique cellular model in which to study the role of abnormal iron metabolism in the pathogenesis of HF without artifacts derived from over-expression or lack of endogenous translational regulatory elements.

7.
Brain Pathol ; 19(1): 58-68, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18410407

RESUMEN

Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease clinically characterized by the presence of cataracts, hearing impairment, cerebellar ataxia and dementia. Neuropathologically, FDD is characterized by the presence of widespread cerebral amyloid angiopathy (CAA), parenchymal amyloid deposition and neurofibrillary tangles. FDD is caused by a 10-nucleotide duplication-insertion in the BRI(2) gene that generates a larger-than-normal precursor protein, of which the Danish amyloid subunit (ADan) comprises the last 34 amino acids. Here, we describe a transgenic mouse model for FDD (Tg-FDD) in which the mouse Prnp (prion protein) promoter drives the expression of the Danish mutant form of human BRI(2). The main neuropathological findings in Tg-FDD mice are the presence of widespread CAA and parenchymal deposition of ADan. In addition, we observe the presence of amyloid-associated gliosis, an inflammatory response and deposition of oligomeric ADan. As the animals aged, they showed abnormal grooming behavior, an arched back, and walked with a wide-based gait and shorter steps. This mouse model may give insights on the pathogenesis of FDD and will prove useful for the development of therapeutics. Moreover, the study of Tg-FDD mice may offer new insights into the role of amyloid in neurodegeneration in other disorders, including Alzheimer disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Angiopatía Amiloide Cerebral/patología , Proteínas de la Membrana/genética , Mutación , Proteínas Adaptadoras Transductoras de Señales , Factores de Edad , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/fisiopatología , Angiopatía Amiloide Cerebral/genética , Angiopatía Amiloide Cerebral/metabolismo , Demencia/genética , Demencia/metabolismo , Demencia/patología , Dinamarca , Modelos Animales de Enfermedad , Expresión Génica , Aseo Animal/fisiología , Humanos , Inmunohistoquímica , Glicoproteínas de Membrana , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Reacción en Cadena de la Polimerasa , Proteínas Priónicas , Priones/genética , Priones/metabolismo , Priones/fisiología , Caminata/fisiología
8.
J Biol Chem ; 283(46): 31679-89, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18755684

RESUMEN

Nucleotide insertions in the ferritin light chain (FTL) polypeptide gene cause hereditary ferritinopathy, a neurodegenerative disease characterized by abnormal accumulation of ferritin and iron in the central nervous system. Here we describe for the first time the protein structure and iron storage function of the FTL mutant p.Phe167SerfsX26 (MT-FTL), which has a C terminus altered in sequence and extended in length. MT-FTL polypeptides assembled spontaneously into soluble, spherical 24-mers that were ultrastructurally indistinguishable from those of the wild type. Far-UV CD showed a decrease in alpha-helical content, and 8-anilino-1-naphthalenesulfonate fluorescence revealed the appearance of hydrophobic binding sites. Near-UV CD and proteolysis studies suggested little or no structural alteration outside of the C-terminal region. In contrast to wild type, MT-FTL homopolymers precipitated at much lower iron loading, had a diminished capacity to incorporate iron, and were less thermostable. However, precipitation was significantly reversed by addition of iron chelators both in vitro and in vivo. Our results reveal substantial protein conformational changes localized at the 4-fold pore of MT-FTL homopolymers and imply that the C terminus of the MT-FTL polypeptide plays an important role in ferritin solubility, stability, and iron management. We propose that the protrusion of some portion of the C terminus above the spherical shell allows it to cross-link with other mutant polypeptides through iron bridging, leading to enhanced mutant precipitation by iron. Our data suggest that hereditary ferritinopathy pathogenesis is likely to result from a combination of reduction in iron storage function and enhanced toxicity associated with iron-induced ferritin aggregates.


Asunto(s)
Ferritinas/química , Ferritinas/metabolismo , Hierro/metabolismo , Degeneración Nerviosa/metabolismo , Péptidos/química , Péptidos/metabolismo , Animales , Células Cultivadas , Dicroismo Circular , Ferritinas/genética , Ferritinas/ultraestructura , Humanos , Ratones , Microscopía Electrónica de Transmisión , Mutación/genética , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Péptidos/genética , Unión Proteica , Desnaturalización Proteica , Temperatura
9.
Neurodegener Dis ; 2(3-4): 139-46, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16909019

RESUMEN

Neurons and surrounding glial cells compose a highly specialized functional unit. In amyotrophic lateral sclerosis (ALS) astrocytes interact with motor neurons in a complex manner to modulate neuronal survival. Experiments using chimeric mice expressing ALS-linked mutations to Cu,Zn superoxide dismutase (SOD-1) suggest a critical modulation exerted by neighboring non-neuronal cell types on disease phenotype. When perturbed by primary neuronal damage, e.g. expression of SOD-1 mutations, neurons can signal astrocytes to proliferate and become reactive. Fibroblast growth factor-1 (FGF-1) can be released by motor neurons in response to damage to induce astrocyte activation by signaling through the receptor FGFR1. FGF-1 stimulates nerve growth factor (NGF) expression and secretion, as well as activity of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor. Nrf2 leads to the expression of antioxidant and cytoprotective enzymes such as heme oxygenase-1 and a group of enzymes involved in glutathione metabolism that prevent motor neuron degeneration. However, prolonged stimulation with FGF-1 or SOD-mediated oxidative stress in astrocytes may disrupt the normal neuron-glia interactions and lead to progressive neuronal degeneration. The re-expression of p75 neurotrophin receptor and neuronal NOS in motor neurons in parallel with increased NGF secretion by reactive astrocytes may be a mechanism to eliminate critically damaged neurons. Consequently, astrocyte activation in ALS may have a complex pathogenic role.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Astrocitos/metabolismo , Comunicación Celular/fisiología , Neuronas Motoras/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Astrocitos/patología , Muerte Celular/fisiología , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Gliosis/metabolismo , Humanos , Ratones , Neuronas Motoras/patología , Factor de Crecimiento Nervioso/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
10.
J Neurochem ; 93(1): 38-46, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15773903

RESUMEN

Fibroblast growth factor-1 (FGF1 or acidic FGF) is highly expressed in motor neurons. FGF-1 is released from cells by oxidative stress, which might occur from SOD-1 aberrant function in amyotrophic lateral sclerosis (ALS). Although FGF-1 is known to be neuroprotective after spinal cord injury or axotomy, we found that FGF-1 could activate spinal cord astrocytes in a manner that decreased motor neuron survival in co-cultures. FGF-1 induced accumulation of the FGF receptor 1 (FGFR1) in astrocyte nuclei and potently stimulated nerve growth factor (NGF) expression and secretion. The FGFR1 tyrosine kinase inhibitor PD166866 prevented these effects. Previously, we have shown that NGF secretion by reactive astrocytes induces motor neuron apoptosis through a p75(NTR)-dependent mechanism. Embryonic motor neurons co-cultured on the top of astrocytes exhibiting activated FGFR1 underwent apoptosis, which was prevented by PD166866 or by adding either anti-NGF or anti-p75(NTR) neutralizing antibodies. In the degenerating spinal cord of mice carrying the ALS mutation G93A of Cu, Zn superoxide dismutase, FGF-1 was no longer localized only in the cytosol of motor neurons, while FGFR1 accumulated in the nuclei of reactive astrocytes. These results suggest that FGF-1 released by oxidative stress from motor neurons might have a role in activating astrocytes, which could in turn initiate motor neuron apoptosis in ALS through a p75(NTR)-dependent mechanism.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Apoptosis/fisiología , Astrocitos/efectos de los fármacos , Factor 1 de Crecimiento de Fibroblastos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Neuronas Motoras/fisiología , Receptores de Factor de Crecimiento Nervioso/metabolismo , Médula Espinal/citología , Factores de Edad , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Caspasa 3 , Recuento de Células , Células Cultivadas , Técnicas de Cocultivo , Embrión de Mamíferos , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Técnica del Anticuerpo Fluorescente , Depuradores de Radicales Libres/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Metaloporfirinas/farmacología , Ratones , Ratones Transgénicos , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/inmunología , Factor de Crecimiento Nervioso/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Pirimidinas/farmacología , ARN Mensajero/metabolismo , Ratas , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Receptores de Factor de Crecimiento Nervioso/inmunología , Superóxido Dismutasa/genética , Tirosina/análogos & derivados , Urea/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA