Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Fish Biol ; 100(2): 561-573, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34842286

RESUMEN

Reproduction involves multiple complex behaviours, and the effects of familiarity on such social interactions are seldom described in fish. This is particularly true for sound production and communication within aggressive or non-aggressive context. This study explores the effects of a common garden rearing without parental care of two closely related cichlid species (Nile tilapia Oreochromis niloticus and black-chinned tilapia Sarotherodon melanotheron) on their sound production features and social interactions. After 9 months in common garden rearing, from embryonic stage to first maturity, sound production and associated behaviours were recorded on specimens of the two species in intraspecific and interspecific pairings. The authors found that fish were able to produce the same kind of sounds as those recorded in similar context for their parents. Drum sounds were associated to chasing, lateral attack and courtship in O. niloticus and only to fleeing or avoidance in S. melanotheron. Specific grunts were produced in chasing, after biting and in nest building by O. niloticus, and specific rolling sounds were associated to courtship in S. melanotheron. Sound production and behaviours were not correlated to sex steroid levels, but the number of sounds recorded in aggressive context was correlated to dominance in O. niloticus. The authors conclude that one generation of common garden rearing does not modify sound features, which remain specific and innate in the two cichlids. Despite the familiarity, O. niloticus remained dominant on S. melanotheron, but the aggressiveness between the two species decreased.


Asunto(s)
Cíclidos , Tilapia , Acústica , Agresión , Animales , Comunicación
2.
Nature ; 513(7518): 375-381, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25186727

RESUMEN

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.


Asunto(s)
Cíclidos/clasificación , Cíclidos/genética , Evolución Molecular , Especiación Genética , Genoma/genética , África Oriental , Animales , Elementos Transponibles de ADN/genética , Duplicación de Gen/genética , Regulación de la Expresión Génica/genética , Genómica , Lagos , MicroARNs/genética , Filogenia , Polimorfismo Genético/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-29366921

RESUMEN

Tilapiine species, widely distributed across habitats with diverse water salinities, are important to aquaculture as well as a laboratory model. The effects of water salinity on two tilapia species, that differ in their salinity tolerance, was evaluated. Oreochromis niloticus reared in brackish-water, showed a significant decrease in growth and feed efficiency, whereas O. mossambicus reared in seawater did not show any significant changes. The expression and activity of Na+/K+-ATPase (NKA), V-type H+-ATPase (VHA) and carbonic anhydrase (CA), as well as expression levels of genes encoding two HCO3- and three peptide transporters (nbc1, slc26a6, slc15a1a, slc15a1b and slc15a2) were measured in three intestinal sections of these two species, grown in freshwater and brackish/sea-water. Overall, the spatial distribution along the intestine of the genes examined in this study was similar between the two species, with the exception of tcaIV. The salinity response, on the other hand, varied greatly between these species. In O. mossambicus, there was a salinity-dependent increased expression of most of the examined genes (except slc26a6 and slc15a2), while in O. niloticus the expression of most genes did not change, or even decreased (tcaIV, nbc1 and slc15a1b). This study highlighted differences in the intestinal response to salinity acclimation between closely- related species that differ in their salinity tolerance. O. mossambicus, which has a high salinity tolerance, showed expression patterns and responses similar to marine species, and differed from the low-salinity-tolerance O. niloticus, which showed a response that differed from the accepted models, that are based on marine and diadromous fishes.


Asunto(s)
Aclimatación , Mucosa Intestinal/metabolismo , Salinidad , Tilapia/fisiología , Animales , Anhidrasas Carbónicas/metabolismo , Conducta Alimentaria , Transporte Iónico , Masculino , Proteínas de Transporte de Membrana/metabolismo , Agua de Mar , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Especificidad de la Especie , Tilapia/clasificación , Tilapia/genética , Tilapia/crecimiento & desarrollo , ATPasas de Translocación de Protón Vacuolares/metabolismo
4.
BMC Genomics ; 17(1): 808, 2016 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-27756226

RESUMEN

BACKGROUND: Inversions and other structural polymorphisms often reduce the rate of recombination between sex chromosomes, making it impossible to fine map sex-determination loci using traditional genetic mapping techniques. Here we compare distantly related species of tilapia that each segregate an XY system of sex-determination on linkage group 1. We use whole genome sequencing to identify shared sex-patterned polymorphisms, which are candidates for the ancestral sex-determination mutation. RESULTS: We found that Sarotherodon melanotheron segregates an XY system on LG1 in the same region identified in Oreochromis niloticus. Both species have higher densities of sex-patterned SNPs, as well as elevated number of ancestral copy number variants in this region when compared to the rest of the genome, but the pattern of differentiation along LG1 differs between species. The number of sex-patterned SNPs shared by the two species is small, but larger than expected by chance, suggesting that a novel Y-chromosome arose just before the divergence of the two species. We identified a shared sex-patterned SNP that alters a Gata4 binding site near Wilms tumor protein that might be responsible for sex-determination. CONCLUSIONS: Shared sex-patterned SNPs, insertions and deletions suggest an ancestral sex-determination system that is common to both S. melanotheron and O. niloticus. Functional analyses are needed to evaluate shared SNPs near candidate genes that might play a role in sex-determination of these species. Interspecific variation in the sex chromosomes of tilapia species provides an excellent model system for understanding the evolution of vertebrate sex chromosomes.


Asunto(s)
Cromosomas Sexuales , Tilapia/genética , Animales , Evolución Biológica , Mapeo Cromosómico , Biología Computacional/métodos , Variaciones en el Número de Copia de ADN , Femenino , Ligamiento Genético , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Procesos de Determinación del Sexo
5.
Mol Reprod Dev ; 81(12): 1146-58, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25482380

RESUMEN

In this study, we sought to determine the mechanism of early sex reversal in a teleost by applying 4 hr feminization treatments to XY (17α-ethynylestradiol 2000 µg L(-1) ) and YY (6500 µg L(-1) ) Nile tilapia embryos on the first day post-fertilization (dpf). We then searched for changes in the expression profiles of some sex-differentiating genes in the brain (cyp19a1b, foxl2, and amh) and in sex steroids (testosterone, 17ß-estradiol, and 11-ketotestosterone) concentrations during embryogenesis and gonad differentiation. No sex reversal was observed in YY individuals, whereas sex-reversal rates in XY progeny ranged from 0-60%. These results, together with the clearance profile of 17α-ethynylestradiol, confirmed the existence of an early sensitive period for sex determination that encompasses embryonic and larval development and is active prior to any sign of gonad differentiation. Estrogen treatment induced elevated expression of cyp19a1b and higher testosterone and 17ß-estradiol concentrations at 4 dpf in both XY and YY individuals. foxl2 and amh were repressed at 4 dpf and their expression levels were not different between treated and control groups at 14 dpf, suggesting that foxl2 did not control cyp19a1b in the brains of tilapia embryos. Increased cyp19a1b expression in treated embryos could reflect early brain sexualization, although this difference alone cannot account for the observed sex reversal as the treatment was ineffective in YY individuals. The differential sensitivity of XY and YY genotypes to embryonic induced-feminization suggests that a sex determinant on the sex chromosomes, such as a Y repressor or an X activator, may influence sex reversal during the first steps of tilapia embryogenesis.


Asunto(s)
Cíclidos/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Procesos de Determinación del Sexo/fisiología , Factores de Edad , Animales , Aromatasa/metabolismo , Estradiol/metabolismo , Etinilestradiol/farmacología , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genotipo , Masculino , Procesos de Determinación del Sexo/efectos de los fármacos , Razón de Masculinidad , Análisis de Supervivencia , Testosterona/análogos & derivados , Testosterona/metabolismo
6.
Gen Comp Endocrinol ; 205: 142-50, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25058367

RESUMEN

Oestrogens and insulin-like growth factors (Igfs) play both a central role in the regulation of reproduction and growth and can interact especially in species showing a clear-cut sex-linked growth dimorphism (SGD) like in tilapia. Aromatase is essential in ovarian differentiation and oogenesis since it controls oestrogen synthesis. During tilapia sex differentiation, aromatase cyp19a1a expression increases from 9 days post-fertilization (dpf), resulting in high oestradiol level. High temperature, exogenous androgens or aromatase inhibitors override genetic sex differentiation inducing testes development through the suppression of cyp19a1a gene expression and aromatase activity. Supplementation with 17ß-oestradiol (E2) of gonadectomized juveniles induced a sustained and higher E2 plasma level than in intact or gonadectomized controls and both sexes showed reduced growth. Juvenile and mature females treated with the aromatase inhibitor 1,4,6-androstatriene-3,17-dione had 19% lower E2 plasma level compared to controls and they showed a 32% increased growth after 28 days of treatment. Altogether, these data suggest that E2 inhibits female growth leading to the SGD. Regarding Igf-1, mRNA and peptide appeared in liver at ∼ 4 dpf and then in organs involved in growth and metabolism, indicating a role in early growth, metabolism and organogenesis. Gonad igf-1 showed an early expression and the peptide could be detected at ∼ 7 dpf in somatic cells. It appeared in germ cells at the onset of ovarian (29 dpf) and testicular (52 dpf) meiosis. In testis, Igf-1 together with steroids may regulate spermatogenesis whereas in ovary it participates in steroidogenesis regulation. Igf-1 and Igf-2 promote proliferation of follicular cells and oocyte maturation. Igf-3 expression is gonad specific and localized in the ovarian granulosa or testicular interstitial cells. In developing gonads igf-3 is up-regulated in males but down-regulated in females. In contrast, bream Gh injections increased igf-1 mRNA in male and female liver and ovaries but gonadal igf-3 was not affected. Thus, local Igf-1 and Igf-2 may play crucial roles in the formation, development and function of gonads while Igf-3 depending on the species is involved in male and female reproduction. Furthermore, precocious ethynylestradiol (EE) exposure induced lasting effects on growth, through pituitary gh inhibition, local suppression of igf-1 expression and in testis only down-regulation of igf-3 mRNA. In conclusion, SGD in tilapia may be driven through an inhibitory effect due to E2 synthesis in female and involving Igfs regulation.


Asunto(s)
Cíclidos/crecimiento & desarrollo , Cíclidos/metabolismo , Estrógenos/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Reproducción , Adolescente , Animales , Peso Corporal , Cíclidos/sangre , Cíclidos/genética , Estradiol/sangre , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Masculino , Ovario/metabolismo , ARN Mensajero/metabolismo , Reproducción/efectos de los fármacos , Diferenciación Sexual/fisiología , Testículo/metabolismo
7.
Gen Comp Endocrinol ; 193: 234-42, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23800559

RESUMEN

Nile tilapia has primarily a XX/XY sex determining system but minor genetic factors as well as temperature can override the major factors. Female XX progenies can be sex-reversed into functional males by rearing at high temperatures (>34°C) from 10dpf onwards. Temperature effects on the molecular pathways during sex differentiation in teleosts need to be deciphered. The temporal expression profiles of cyp19a1a and foxl2, two ovarian-developmental genes and dmrt1 and amh, two testes-developmental genes were analysed during key stages of the sex differentiation of genetic all-females, all-males and temperature-masculinised XX females (TM) tilapia. Overall QPCR analysis was similar between gonads and trunks. Both amh and dmrt1 expressions were up-regulated simultaneously in TM already at 13-15dpf. Dmrt1 expression became markedly elevated ∼3-fold higher than XY male levels at 20-26dpf whereas amh had similar levels to XY males. Foxl2 and cyp19a1a expression profiles were similar. Both were up-regulated at early stages in TM but repressed after 17-19dpf, whilest levels continued to increase in XX-females. Our results show that temperature action on tilapia testis development induces the rapid increase of both dmrt1 and amh expressions followed by the down-regulation of foxl2 and cyp19a1a. This suggests that dmrt1 and/or amh may be the modulator(s) of the down-regulation of foxl2 and/or cyp19a1a.


Asunto(s)
Cíclidos/metabolismo , Animales , Cíclidos/genética , Cíclidos/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Gónadas/citología , Gónadas/metabolismo , Masculino , Reacción en Cadena en Tiempo Real de la Polimerasa , Diferenciación Sexual/genética , Diferenciación Sexual/fisiología , Temperatura , Factores de Transcripción/genética , Regulación hacia Arriba
8.
BMC Genomics ; 13: 222, 2012 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-22672252

RESUMEN

BACKGROUND: The Nile tilapia (Oreochromis niloticus) is the second most farmed fish species worldwide. It is also an important model for studies of fish physiology, particularly because of its broad tolerance to an array of environments. It is a good model to study evolutionary mechanisms in vertebrates, because of its close relationship to haplochromine cichlids, which have undergone rapid speciation in East Africa. The existing genomic resources for Nile tilapia include a genetic map, BAC end sequences and ESTs, but comparative genome analysis and maps of quantitative trait loci (QTL) are still limited. RESULTS: We have constructed a high-resolution radiation hybrid (RH) panel for the Nile tilapia and genotyped 1358 markers consisting of 850 genes, 82 markers corresponding to BAC end sequences, 154 microsatellites and 272 single nucleotide polymorphisms (SNPs). From these, 1296 markers could be associated in 81 RH groups, while 62 were not linked. The total size of the RH map is 34,084 cR(3500) and 937,310 kb. It covers 88% of the entire genome with an estimated inter-marker distance of 742 Kb. Mapping of microsatellites enabled integration to the genetic map. We have merged LG8 and LG24 into a single linkage group, and confirmed that LG16-LG21 are also merged. The orientation and association of RH groups to each chromosome and LG was confirmed by chromosomal in situ hybridizations (FISH) of 55 BACs. Fifty RH groups were localized on the 22 chromosomes while 31 remained small orphan groups. Synteny relationships were determined between Nile tilapia, stickleback, medaka and pufferfish. CONCLUSION: The RH map and associated FISH map provide a valuable gene-ordered resource for gene mapping and QTL studies. All genetic linkage groups with their corresponding RH groups now have a corresponding chromosome which can be identified in the karyotype. Placement of conserved segments indicated that multiple inter-chromosomal rearrangements have occurred between Nile tilapia and the other model fishes. These maps represent a valuable resource for organizing the forthcoming genome sequence of Nile tilapia, and provide a foundation for evolutionary studies of East African cichlid fishes.


Asunto(s)
Cíclidos/genética , Genoma , Animales , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Cromosomas Artificiales Bacterianos/metabolismo , Hibridación Genómica Comparativa , Etiquetas de Secuencia Expresada , Ligamiento Genético , Genotipo , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple , Mapeo de Híbrido por Radiación
9.
Front Genet ; 13: 820772, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35656328

RESUMEN

Sex-determining regions have been identified in the Nile tilapia on linkage groups (LG) 1, 20 and 23, depending on the domesticated strains used. Sex determining studies on wild populations of this species are scarce. Previous work on two wild populations, from Lake Volta (Ghana) and from Lake Koka (Ethiopia), found the sex-determining region on LG23. These populations have a Y-specific tandem duplication containing two copies of the Anti-Müllerian Hormone amh gene (named amhY and amhΔY). Here, we performed a whole-genome short-reads analysis using male and female pools on a third wild population from Lake Hora (Ethiopia). We found no association of sex with LG23, and no duplication of the amh gene. Furthermore, we found no evidence of sex linkage on LG1 or on any other LGs. Long read whole genome sequencing of a male from each population confirmed the absence of a duplicated region on LG23 in the Lake Hora male. In contrast, long reads established the structure of the Y haplotype in Koka and Kpandu males and the order of the genes in the duplicated region. Phylogenies constructed on the nuclear and mitochondrial genomes, showed a closer relationship between the two Ethiopian populations compared to the Ghanaian population, implying an absence of the LG23Y sex-determination region in Lake Hora males. Our study supports the hypothesis that the amh region is not the sex-determining region in Hora males. The absence of the Y amh duplication in the Lake Hora population reflects a rapid change in sex determination within Nile tilapia populations. The genetic basis of sex determination in the Lake Hora population remains unknown.

10.
Artículo en Inglés | MEDLINE | ID: mdl-34794104

RESUMEN

Tilapiine fishes of the genus Oreochromis vary in their euryhaline capabilities, therefore inhabiting aquatic environments of different salinities across the African continent. We analyzed the differential gene expression in the gills before and after 6 weeks salinity challenge between the highly tolerant Mozambique tilapia (Oreochromis mossambicus) and the less tolerant Nile tilapia (O. niloticus). The pathways triggered by salinity in both tilapia species reveal immune and cell stress responses as well as turnover of ionocytes. Nevertheless, the actual differential expressed genes vary between these two species, pointing at differential transcriptomic architecture, which likely contribute to the species osmoregulation capabilities in elevated salinities.


Asunto(s)
Cíclidos , Tilapia , Animales , Cíclidos/genética , Branquias/metabolismo , Osmorregulación , Salinidad , Tilapia/genética , Transcriptoma
11.
Front Endocrinol (Lausanne) ; 13: 976488, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313755

RESUMEN

Prolactin (Prl) and growth hormone (Gh) as well as insulin-like growth factor 1 (Igf1) are involved in the physiological adaptation of fish to varying salinities. The Igfs have been also ascribed other physiological roles during development, growth, reproduction and immune regulation. However, the main emphasis in the investigation of osmoregulatory responses has been the endocrine, liver-derived Igf1 route and local regulation within the liver and osmoregulatory organs. Few studies have focused on the impact of salinity alterations on the Gh/Igf-system within the neuroendocrine and immune systems and particularly in a salinity-tolerant species, such as the blackchin tilapia Sarotherodon melanotheron. This species is tolerant to hypersalinity and saline variations, but it is confronted by severe climate changes in the Saloum inverse estuary. Here we investigated bidirectional effects of increased salinity followed by its decrease on the gene regulation of prl, gh, igf1, igf2, Gh receptor and the tumor-necrosis factor a. A mixed population of sexually mature 14-month old blackchin tilapia adapted to freshwater were first exposed to seawater for one week and then to fresh water for another week. Brain, pituitary, head kidney and spleen were excised at 4 h, 1, 2, 3 and 7 days after both exposures and revealed differential expression patterns. This investigation should give us a better understanding of the role of the Gh/Igf system within the neuroendocrine and immune organs and the impact of bidirectional saline challenges on fish osmoregulation in non-osmoregulatory organs, notably the complex orchestration of growth factors and cytokines.


Asunto(s)
Cíclidos , Hormona de Crecimiento Humana , Tilapia , Animales , Hormona del Crecimiento/metabolismo , Tilapia/metabolismo , Agua Dulce , Agua de Mar , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Cíclidos/metabolismo , Prolactina/metabolismo , Hormona de Crecimiento Humana/metabolismo
12.
BMC Genet ; 12: 102, 2011 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-22151746

RESUMEN

BACKGROUND: Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus) populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. RESULTS: Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian) (R(ST) = 0.38 - 0.69). This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (R(ST) = 0.24 - 0.32). The lowest differentiations were observed among connected populations within a basin (R(ST) = 0.015 in the Volta basin). Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053). The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097) in the Volta populations. CONCLUSIONS: This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were predominant at macro-geographic scale, and the significant effect of geographic connectivity was detected at micro-geographic scale. The estimated effective population size, the moderate level of dispersal and the rapid temporal change in genetic composition might reflect a potential effect of life history strategy on population dynamics. This hypothesis deserves further investigation. The dynamic pattern revealed at micro-geographic and temporal scales appears important from a genetic resource management as well as from a biodiversity conservation point of view.


Asunto(s)
Cíclidos/genética , África , Migración Animal , Animales , Variación Genética , Genética de Población , Repeticiones de Microsatélite , Filogeografía
13.
BMC Genomics ; 11: 721, 2010 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-21172006

RESUMEN

BACKGROUND: Members of the makorin (mkrn) gene family encode RING/C3H zinc finger proteins with U3 ubiquitin ligase activity. Although these proteins have been described in a variety of eukaryotes such as plants, fungi, invertebrates and vertebrates including human, almost nothing is known about their structural and functional evolution. RESULTS: Via partial sequencing of a testis cDNA library from the poeciliid fish Xiphophorus maculatus, we have identified a new member of the makorin gene family, that we called mkrn4. In addition to the already described mkrn1 and mkrn2, mkrn4 is the third example of a makorin gene present in both tetrapods and ray-finned fish. However, this gene was not detected in mouse and rat, suggesting its loss in the lineage leading to rodent murids. Mkrn2 and mkrn4 are located in large ancient duplicated regions in tetrapod and fish genomes, suggesting the possible involvement of ancestral vertebrate-specific genome duplication in the formation of these genes. Intriguingly, many mkrn1 and mkrn2 intronless retrocopies have been detected in mammals but not in other vertebrates, most of them corresponding to pseudogenes. The nature and number of zinc fingers were found to be conserved in Mkrn1 and Mkrn2 but much more variable in Mkrn4, with lineage-specific differences. RT-qPCR analysis demonstrated a highly gonad-biased expression pattern for makorin genes in medaka and zebrafish (ray-finned fishes) and amphibians, but a strong relaxation of this specificity in birds and mammals. All three mkrn genes were maternally expressed before zygotic genome activation in both medaka and zebrafish early embryos. CONCLUSION: Our analysis demonstrates that the makorin gene family has evolved through large-scale duplication and subsequent lineage-specific retroposition-mediated duplications in vertebrates. From the three major vertebrate mkrn genes, mkrn4 shows the highest evolutionary dynamics, with lineage-specific loss of zinc fingers and even complete gene elimination from certain groups of vertebrates. Comparative expression analysis strongly suggests that the ancestral E3 ubiquitin ligase function of the single copy mkrn gene before duplication in vertebrates was gonad-specific, with maternal expression in early embryos.


Asunto(s)
Duplicación de Gen/genética , Gónadas/metabolismo , Familia de Multigenes/genética , Proteínas del Tejido Nervioso/genética , Filogenia , Poecilia/genética , Retroelementos/genética , Secuencia de Aminoácidos , Animales , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos/genética , Estructura Terciaria de Proteína , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sintenía/genética , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Dedos de Zinc
14.
BMC Genomics ; 11: 278, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20433739

RESUMEN

BACKGROUND: Large collections of expressed sequence tags (ESTs) are a fundamental resource for analysis of gene expression and annotation of genome sequences. We generated 116,899 ESTs from 17 normalized and two non-normalized cDNA libraries representing 16 tissues from tilapia, a cichlid fish widely used in aquaculture and biological research. RESULTS: The ESTs were assembled into 20,190 contigs and 36,028 singletons for a total of 56,218 unique sequences and a total assembled length of 35,168,415 bp. Over the whole project, a unique sequence was discovered for every 2.079 sequence reads. 17,722 (31.5%) of these unique sequences had significant BLAST hits (e-value < 10(-10)) to the UniProt database. CONCLUSION: Normalization of the cDNA pools with double-stranded nuclease allowed us to efficiently sequence a large collection of ESTs. These sequences are an important resource for studies of gene expression, comparative mapping and annotation of the forthcoming tilapia genome sequence.


Asunto(s)
Etiquetas de Secuencia Expresada , Biblioteca Genómica , Tilapia/genética , Animales , ADN Complementario , Repeticiones de Microsatélite , Polimorfismo de Nucleótido Simple
15.
BMC Genomics ; 11: 636, 2010 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-21080946

RESUMEN

BACKGROUND: The Nile tilapia is the second most important fish in aquaculture. It is an excellent laboratory model, and is closely related to the African lake cichlids famous for their rapid rates of speciation. A suite of genomic resources has been developed for this species, including genetic maps and ESTs. Here we analyze BAC end-sequences to develop comparative physical maps, and estimate the number of genome rearrangements, between tilapia and other model fish species. RESULTS: We obtained sequence from one or both ends of 106,259 tilapia BACs. BLAST analysis against the genome assemblies of stickleback, medaka and pufferfish allowed identification of homologies for approximately 25,000 BACs for each species. We calculate that rearrangement breakpoints between tilapia and these species occur about every 3 Mb across the genome. Analysis of 35,000 clones previously assembled into contigs by restriction fingerprints allowed identification of longer-range syntenies. CONCLUSIONS: Our data suggest that chromosomal evolution in recent teleosts is dominated by alternate loss of gene duplicates, and by intra-chromosomal rearrangements (~one per million years). These physical maps are a useful resource for comparative positional cloning of traits in cichlid fishes. The paired BAC end sequences from these clones will be an important resource for scaffolding forthcoming shotgun sequence assemblies of the tilapia genome.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Cíclidos/genética , Mapeo Físico de Cromosoma , Análisis de Secuencia de ADN/métodos , Animales , Secuencia Conservada/genética , Proteínas de Peces/genética , Biblioteca de Genes , Orden Génico/genética , Genoma/genética , Repeticiones de Microsatélite/genética , Datos de Secuencia Molecular , Smegmamorpha/genética
16.
Gen Comp Endocrinol ; 167(1): 128-34, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20138177

RESUMEN

Recently, in addition to IGF-1 and IGF-2 the existence of a third form of IGF, termed IGF-3, limited to fishes, to be present only in the gonads and encoded by a separate gene has been reported. However, no further data have been presented on IGF-3. The present study on tilapia (Oreochromis niloticus) uses quantitative real-time PCR specific for tilapia IGF-1 and IGF-3. The organ distribution of IGF-3 mRNA in adult fish and the early ontogeny of IGF-3 in male and female gonads were studied. The potential sensitivity of IGF-3 to GH was revealed by intraperitoneal injections of bream GH using IGF-1 as control gene. The effects of 17alpha-ethinylestradiol (EE2) exerted after feeding of high EE2 doses and exposure to low environmentally relevant EE2 doses on IGF-3 expression in testis and ovary during early development were determined. Low IGF-3 mRNA expression levels were detected in most organs studied, with the highest extra-gonadal amount in the pituitary. During development, the IGF-3 gene was significantly upregulated in male but downregulated in female gonad. Injections of GH elevated IGF-1 mRNA in male and female liver and ovary. IGF-3 did not respond to GH treatment neither in ovary nor in testis. Both EE2 treatments resulted in significant downregulations of IGF-3 mRNA in testis while ovarian IGF-3 mRNA did not respond. Thus, IGF-3 may be involved in reproduction of fishes most likely in the male gonad only. Whether IGF-3 also has some physiological significance in ovary or other organs should be the topic of further studies.


Asunto(s)
Etinilestradiol/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hormona del Crecimiento/farmacología , Ovario , Testículo , Tilapia/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Masculino , Ovario/efectos de los fármacos , Ovario/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Testículo/efectos de los fármacos , Testículo/metabolismo , Tilapia/crecimiento & desarrollo
17.
Zoology (Jena) ; 143: 125831, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32949976

RESUMEN

We characterised, for the first-time, the sound production of black-chinned tilapia Sarotherodon melanotheron and show differences with that of Nile tilapia Oreochromis niloticus in a hybridization pairing context. Although both species were able to produce drum sounds, they showed different acoustic features. Drum sounds were produced in aggressive (chasing or lateral attack) and non-aggressive (courtship) contexts by O. niloticus but only in aggressive situations (fleeing or avoidance) by S. melanotheron. The second type of sounds produced by O. niloticus were grunts, produced in both aggressive (chasing and after biting) and non-aggressive contexts (nest building). The second type of sound produced by S. melanotheron was a rolling sound, produced only during courtship. Each species was able to produce common sounds (drum) and species-specific sounds (grunts and rolling). This implies that species can communicate without being able to understand each other because the sounds emitted may probably have different significance. Drumming corresponded only to aggressivity in S. melanotheron, whereas this was not true for O. niloticus. 11-ketotestosterone (11-kt) levels were significantly higher in male O. niloticus than male S. melanotheron, but there was no significant correlation between 11-kt or estradiol concentrations and the number of sounds produced in aggressive or non-aggressive behavioural contexts in either species. During interspecies interactions, O. niloticus drum sounds are likely considered to be aggressive by S. melanotheron and could potentially constitute a reproductive barrier between the two species.


Asunto(s)
Cíclidos/fisiología , Conducta Sexual Animal/fisiología , Vocalización Animal/fisiología , Agresión , Animales , Femenino , Masculino , Especificidad de la Especie , Testosterona/análogos & derivados , Testosterona/sangre
18.
Genes (Basel) ; 11(9)2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872430

RESUMEN

In domesticated strains of the Nile tilapia, phenotypic sex has been linked to genetic variants on linkage groups 1, 20 and 23. This diversity of sex-loci might reflect a naturally polymorphic sex determination system in Nile tilapia, or it might be an artefact arising from the process of domestication. Here, we searched for sex-determiners in wild populations from Kpandu, Lake Volta (Ghana-West Africa), and from Lake Koka (Ethiopia-East Africa) that have not been subjected to any genetic manipulation. We analysed lab-reared families using double-digest Restriction Associated DNA sequencing (ddRAD) and analysed wild-caught males and females with pooled whole-genome sequencing (WGS). Strong sex-linked signals were found on LG23 in both populations, and sex-linked signals with LG3 were observed in Kpandu samples. WGS uncovered blocks of high sequence coverage, suggesting the presence of B chromosomes. We confirmed the existence of a tandem amh duplication in LG23 in both populations and determined its breakpoints between the oaz1 and dot1l genes. We found two common deletions of ~5 kb in males and confirmed the presence of both amhY and amh∆Y genes. Males from Lake Koka lack both the previously reported 234 bp deletion and the 5 bp frameshift-insertion that creates a premature stop codon in amh∆Y.


Asunto(s)
Cíclidos/genética , Ligamiento Genético , Marcadores Genéticos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Procesos de Determinación del Sexo/genética , Animales , Mapeo Cromosómico , Femenino , Masculino , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
19.
Fish Shellfish Immunol ; 26(3): 524-30, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19340956

RESUMEN

The enormous expansion of world-wide aquaculture has led to increasing interest in the regulation of fish immune system. Estrogen has recently been shown to inhibit the endocrine (liver-derived) and autocrine/paracrine local insulin-like growth factor-I system in fish. In order to address the potential actions of estrogen on the IGF system in immune organs, tilapia were fed with 17alpha-ethinylestradiol (EE2)-enriched food from 10 to 40 days post fertilization (DPF) to induce functional feminization, an approach commonly used in aquaculture. EE2-treated and control fish were sampled at 75 and 165 DPF. The expression levels of ER-alpha, IGF-I, IGF-II and growth hormone receptor (GH-R) mRNA in spleen and head kidney were determined by real-time PCR and the expressing sites of IGF-I mRNA identified by in situ hybridisation. Ratios of spleen length and weight to body length and weight were determined. At 165 DPF, the length (4.9% vs. 7.6%) and weight (0.084% vs. 0.132%) ratios were significantly lowered in EE2-treated fish and number and size of the melanomacrophage centres were considerably reduced. At 75 DPF, both in spleen and head kidney of EE2-treated fish the expression levels of IGF-I and IGF-II mRNA were markedly diminished. The suppression was more pronounced for IGF-I (spleen: -12.071-fold; head kidney: -8.413-fold) than for IGF-II (spleen: -4.102-fold; head kidney: -1.342-fold). In agreement, clearly fewer leucocytes and macrophages in head kidney and spleen of EE2-treated fish contained IGF-I mRNA as shown by in situ hybridisation. ER-alpha mRNA expression in spleen was increased at 75 DPF but unchanged in head kidney. GH-R gene expression showed a mild upregulation at 165 DPF in both tissues. Thus, exposure to EE2 during early development affected distinctly the IGF system in tilapia immune organs. It led to lasting impairment of spleen growth and differentiation that can be attributed to an interaction of EE2 with IGF-I and, less pronouncedly, IGF-II. Especially, the impairment of spleen and melanomacrophage centres might interfere with the antigen presentation capacity of the immune system and, thus, alter susceptibility to infection.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Etinilestradiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Tilapia/fisiología , Actinas/metabolismo , Animales , Estrógenos/farmacología , Etinilestradiol/metabolismo , Hibridación in Situ , Tamaño de los Órganos , Estabilidad Proteica , Bazo/metabolismo , Tilapia/crecimiento & desarrollo , Tilapia/metabolismo
20.
PeerJ ; 7: e7709, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579600

RESUMEN

Sex determination and sex chromosomes can be very diverse between teleost species. The group of tilapias shows a polymorphism in sex determination not only between closely related species but also between domestic strains within a species. In the Nile tilapia, the major effect genes and therefore the Y chromosome have been located on either linkage group 1 (LG1) or LG23 depending on the strains. In a Japanese strain, the sex determinant of LG23 (the amhY gene) has been identified as a duplicated amh (anti-Müllerian hormone) gene, with its gametolog found on the X chromosome (amhX). AmhY is located in tandem with the amhΔY gene (a truncated form) on the Y chromosome. X and Y chromosome markers based on the amh genes have been validated only on a few domestic strains but not in wild populations. Here, we used four of these markers in order to examine (1) the possible variation in sex determination of a wild population of Nile tilapia living in Lake Kou (Burkina Faso), (2) putative polymorphisms for these amh copies and (3) the existence of sex reversed individuals in the wild. Our genotyping of 91 wild Kou individuals with the amh sex-diagnostic markers of LG23 showed that while phenotypic females were all XX, phenotypic males were either XY or XX. Progeny testing of eight of these XX males revealed that one of these males consistently sired all-female progenies, suggesting that it is a wild sex reversed male (which could result from high temperature effects). The other XX males gave balanced sex ratios, suggesting that sex is controlled by another locus (possibly on another LG) which may be epistatically dominant over the LG23 locus. Finally, identification of unexpected amh genotypes was found for two individuals. They produced either balanced or female-biased sex ratios, depending on the breeder with whom they were crossed, suggesting possible recombination between the X and the Y chromosomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA