RESUMEN
Lymphocytic choriomeningitis virus (LCMV) is a bisegmented negative-sense RNA virus classified within the Arenaviridae family of the Bunyavirales order. LCMV is associated with fatal disease in immunocompromized populations, and as the prototypical arenavirus, acts as a model for the many serious human pathogens within this group. Here, we examined the dependence of LCMV multiplication on cellular trafficking components using a recombinant LCMV expressing enhanced green fluorescent protein in conjunction with a curated siRNA library. The screen revealed a requirement for subunits of both the coat protein 1 (COPI) coatomer and adapter protein 4 (AP-4) complexes. By rescuing a recombinant LCMV harboring a FLAG-tagged glycoprotein (GP-1) envelope spike (rLCMV-GP1-FLAG), we showed infection resulted in marked co-localization of individual COPI and AP-4 components with both LCMV nucleoprotein (NP) and GP-1, consistent with their involvement in viral processes. To further investigate the role of both COPI and AP-4 complexes during LCMV infection, we utilized the ARF-I inhibitor brefeldin A (BFA) that prevents complex formation. Within a single 12-h cycle of virus multiplication, BFA pre-treatment caused no significant change in LCMV-specific RNA synthesis, alongside no significant change in LCMV NP expression, as measured by BFA time-of-addition experiments. In contrast, BFA addition resulted in a significant drop in released virus titers, approaching 50-fold over the same 12-h period, rising to over 600-fold over 24 h. Taken together, these findings suggest COPI and AP-4 complexes are important host cell factors required for the formation and release of infectious LCMV. IMPORTANCE: Arenaviruses are rodent-borne, segmented, negative-sense RNA viruses, with several members responsible for fatal human disease, with the prototypic member lymphocytic choriomeningitis virus (LCMV) being under-recognised as a pathogen capable of inflicting neurological infections with fatal outcome. A detailed understanding of how arenaviruses subvert host cell processes to complete their multiplication cycle is incomplete. Here, using a combination of gene ablation and pharmacological inhibition techniques, we showed that host cellular COPI and AP-4 complexes, with native roles in cellular vesicular transport, were required for efficient LCMV growth. We further showed these complexes acted on late stages of the multiplication cycle, post-gene expression, with a significant impact on infectious virus egress. Collectively, our findings improve the understanding of arenaviruses host-pathogen interactions and reveal critical cellular trafficking pathways required during infection.
Asunto(s)
Complejo 4 de Proteína Adaptadora , Coriomeningitis Linfocítica , Virus de la Coriomeningitis Linfocítica , Animales , Humanos , Chlorocebus aethiops , Virus de la Coriomeningitis Linfocítica/fisiología , Células Vero , Replicación Viral/genética , Complejo 4 de Proteína Adaptadora/metabolismo , Proteína Coat de Complejo IRESUMEN
The zoonotic rabies virus (RABV) is a non-segmented negative-sense RNA virus classified within the family Rhabdoviridae, and is the most common aetiological agent responsible for fatal rabies disease. The RABV glycoprotein (G) forms trimeric spikes that protrude from RABV virions and mediate virus attachment, entry and spread, and is a major determinant of RABV pathogenesis. A range of RABV strains exist that are highly pathogenic in part due to their ability to evade host immune detection. However, some strains are disease-attenuated and can be cleared by host defences. A detailed molecular understanding of how strain variation relates to pathogenesis is currently lacking. Here, we reveal key differences in the trafficking profiles of RABV-G proteins from the challenge virus standard strain (CVS-11) and a highly attenuated vaccine strain SAD-B19 (SAD). We show that CVS-G traffics to the cell surface and undergoes rapid internalization through both clathrin- and cholesterol-dependent endocytic pathways. In contrast, SAD-G remains resident at the plasma membrane and internalizes at a significantly slower rate. Through engineering hybrids of CVS-G and SAD-G, we show that the cytoplasmic tail of CVS-G is the key determinant of these different internalization profiles. Alanine scanning further revealed that mutation of Y497 in CVS-G (H497 in SAD-G) could reduce the rate of internalization to SAD-G levels. Together, these data reveal new phenotypic differences between CVS-G and SAD-G proteins that may contribute to altered in vivo pathogenicity.
Asunto(s)
Vacunas Antirrábicas , Virus de la Rabia , Rabia , Humanos , Internalización del Virus , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas de Unión al GTP/metabolismoRESUMEN
INTRODUCTION: Human respiratory syncytial virus (HRSV) is a common cause of respiratory tract infections (RTIs) globally and is one of the most fatal infectious diseases for infants in developing countries. Of those infected, 25%-40% aged ≤1 year develop severe lower RTIs leading to pneumonia and bronchiolitis, with ~10% requiring hospitalisation. Evidence also suggests that HRSV infection early in life is a major cause of adult asthma. There is no HRSV vaccine, and the only clinically approved treatment is immunoprophylaxis that is expensive and only moderately effective. New anti-HRSV therapeutic strategies are therefore urgently required. METHODS: It is now established that viruses require cellular ion channel functionality to infect cells. Here, we infected human lung epithelial cell lines and ex vivo human lung slices with HRSV in the presence of a defined panel of chloride (Cl-) channel modulators to investigate their role during the HRSV life-cycle. RESULTS: We demonstrate the requirement for TMEM16A, a calcium-activated Cl- channel, for HRSV infection. Time-of-addition assays revealed that the TMEM16A blockers inhibit HRSV at a postentry stage of the virus life-cycle, showing activity as a postexposure prophylaxis. Another important negative-sense RNA respiratory pathogen influenza virus was also inhibited by the TMEM16A-specific inhibitor T16Ainh-A01. DISCUSSION: These findings reveal TMEM16A as an exciting target for future host-directed antiviral therapeutics.
Asunto(s)
Anoctamina-1/farmacología , Anticuerpos Antivirales/inmunología , Proteínas de Neoplasias/farmacología , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitial Respiratorio Humano/inmunología , Células Cultivadas , Humanos , Pulmón/metabolismo , Pulmón/patología , Pulmón/virología , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virologíaRESUMEN
Hazara nairovirus (HAZV) is a member of the family Nairoviridae in the order Bunyavirales and closely related to Crimean-Congo hemorrhagic fever virus, which is responsible for severe and fatal human disease. The HAZV genome comprises three segments of negative-sense RNA, named S, M, and L, with nontranslated regions (NTRs) flanking a single open reading frame. NTR sequences regulate RNA synthesis and, by analogy with other segmented negative-sense RNA viruses, may direct activities such as virus assembly and innate immune modulation. The terminal-proximal nucleotides of 3' and 5' NTRs exhibit extensive terminal complementarity; the first 11 nucleotides are strictly conserved and form promoter element 1 (PE1), with adjacent segment-specific nucleotides forming PE2. To explore the functionality of NTR nucleotides within the context of the nairovirus multiplication cycle, we designed infectious HAZV mutants bearing successive deletions throughout both S segment NTRs. Fitness of rescued viruses was assessed in single-step and multistep growth, which revealed that the 3' NTR was highly tolerant to change, whereas several deletions of centrally located nucleotides in the 5' NTR led to significantly reduced growth, indicative of functional disruption. Deletions that encroached upon PE1 and PE2 ablated virus growth and identified additional adjacent nucleotides critical for viability. Mutational analysis of PE2 suggest that its signaling ability relies solely on interterminal base pairing and is an independent cis-acting signaling module. This study represents the first mutagenic analysis of nairoviral NTRs in the context of the infectious cycle, and the mechanistic implications of our findings for nairovirus RNA synthesis are discussed.IMPORTANCE Nairoviruses are a group of RNA viruses that include many serious pathogens of humans and animals, including one of the most serious human pathogens in existence, Crimean-Congo hemorrhagic fever virus. The ability of nairoviruses to multiply and cause disease is controlled in major part by nucleotides that flank the 3' and 5' ends of nairoviral genes, called nontranslated regions (NTRs). NTR nucleotides interact with other virus components to perform critical steps of the virus multiplication cycle, such as mRNA transcription and RNA replication, with other roles being likely. To better understand how NTRs work, we performed the first comprehensive investigation of the importance of NTR nucleotides in the context of the entire nairovirus replication cycle. We identified both dispensable and critical NTR nucleotides, as well as highlighting the importance of 3' and 5' NTR interactions in virus growth, thus providing the first functional map of the nairovirus NTRs.
Asunto(s)
Mutagénesis , Nairovirus/genética , ARN no Traducido/genética , Replicación Viral/genética , Animales , Emparejamiento Base , Secuencia de Bases , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Humanos , Viabilidad Microbiana , Proteínas de la Nucleocápside/genética , ARN Viral/genéticaRESUMEN
Mathematical modelling has successfully been used to provide quantitative descriptions of many viral infections, but for the Ebola virus, which requires biosafety level 4 facilities for experimentation, modelling can play a crucial role. Ebola virus modelling efforts have primarily focused on in vivo virus kinetics, e.g., in animal models, to aid the development of antivirals and vaccines. But, thus far, these studies have not yielded a detailed specification of the infection cycle, which could provide a foundational description of the virus kinetics and thus a deeper understanding of their clinical manifestation. Here, we obtain a diverse experimental data set of the Ebola virus infection in vitro, and then make use of Bayesian inference methods to fully identify parameters in a mathematical model of the infection. Our results provide insights into the distribution of time an infected cell spends in the eclipse phase (the period between infection and the start of virus production), as well as the rate at which infectious virions lose infectivity. We suggest how these results can be used in future models to describe co-infection with defective interfering particles, which are an emerging alternative therapeutic.
Asunto(s)
Ebolavirus/fisiología , Modelos Biológicos , Replicación Viral/fisiología , Animales , Teorema de Bayes , Chlorocebus aethiops , Biología Computacional , Simulación por Computador , Ebolavirus/genética , Ebolavirus/patogenicidad , Fiebre Hemorrágica Ebola/virología , Interacciones Microbiota-Huesped/fisiología , Humanos , Técnicas In Vitro , Cinética , Cadenas de Markov , Método de Montecarlo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Vero , Carga Viral/fisiologíaRESUMEN
The Bunyavirales order of segmented negative-sense RNA viruses includes more than 500 isolates that infect insects, animals, and plants and are often associated with severe and fatal disease in humans. To multiply and cause disease, bunyaviruses must translocate their genomes from outside the cell into the cytosol, achieved by transit through the endocytic network. We have previously shown that the model bunyaviruses Bunyamwera virus (BUNV) and Hazara virus (HAZV) exploit the changing potassium concentration ([K+]) of maturing endosomes to release their genomes at the appropriate endosomal location. K+ was identified as a biochemical cue to activate the viral fusion machinery, promoting fusion between viral and cellular membranes, consequently permitting genome release. In this study, we further define the biochemical prerequisites for BUNV and HAZV entry and their K+ dependence. Using drug-mediated cholesterol extraction along with viral entry and K+ uptake assays, we report three major findings: BUNV and HAZV require cellular cholesterol during endosomal escape; cholesterol depletion from host cells impairs K+ accumulation in maturing endosomes, revealing new insights into endosomal K+ homeostasis; and "priming" BUNV and HAZV virions with K+ before infection alleviates their cholesterol requirement. Taken together, our findings suggest a model in which cholesterol abundance influences endosomal K+ levels and, consequently, the efficiency of bunyavirus infection. The ability to inhibit bunyaviruses with existing cholesterol-lowering drugs may offer new options for future antiviral interventions for pathogenic bunyaviruses.
Asunto(s)
Colesterol/metabolismo , Endosomas/metabolismo , Orthobunyavirus/fisiología , Potasio/metabolismo , Internalización del Virus , Línea Celular Tumoral , Endocitosis , Humanos , Transporte Iónico , Virión/fisiologíaRESUMEN
In order to multiply and cause disease a virus must transport its genome from outside the cell into the cytosol, most commonly achieved through the endocytic network. Endosomes transport virus particles to specific cellular destinations and viruses exploit the changing environment of maturing endocytic vesicles as triggers to mediate genome release. Previously we demonstrated that several bunyaviruses, which comprise the largest family of negative sense RNA viruses, require the activity of cellular potassium (K+) channels to cause productive infection. Specifically, we demonstrated a surprising role for K+ channels during virus endosomal trafficking. In this study, we have used the prototype bunyavirus, Bunyamwera virus (BUNV), as a tool to understand why K+ channels are required for progression of these viruses through the endocytic network. We report three major findings: First, the production of a dual fluorescently labelled bunyavirus to visualize virus trafficking in live cells. Second, we show that BUNV traffics through endosomes containing high [K+] and that these K+ ions influence the infectivity of virions. Third, we show that K+ channel inhibition can alter the distribution of K+ across the endosomal system and arrest virus trafficking in endosomes. These data suggest high endosomal [K+] is a critical cue that is required for virus infection, and is controlled by cellular K+ channels resident within the endosome network. This highlights cellular K+ channels as druggable targets to impede virus entry, infection and disease.
Asunto(s)
Infecciones por Bunyaviridae/metabolismo , Endosomas/metabolismo , Canales Iónicos/fisiología , Orthobunyavirus/patogenicidad , Potasio/metabolismo , Células A549 , Línea Celular Tumoral , Interacciones Huésped-Patógeno , Humanos , Canales Iónicos/metabolismo , Internalización del VirusRESUMEN
Many enveloped viruses enter cells through the endocytic network, from which they must subsequently escape through fusion of viral and endosomal membranes. This membrane fusion is mediated by virus-encoded spikes that respond to the dynamic endosomal environment, which triggers conformational changes in the spikes that initiate the fusion process. Several fusion triggers have been identified and include pH, membrane composition, and endosome-resident proteins, and these cues dictate when and where viral fusion occurs. We recently reported that infection with an enveloped bunyavirus requires elevated potassium ion concentrations [K+], controlled by cellular K+ channels, that are encountered during viral transit through maturing endosomes. Here we reveal the molecular basis for the K+ requirement of bunyaviruses through the first direct visualization of a member of the Nairoviridae family, namely Hazara virus (HAZV), using cryo-EM. Using cryo-electron tomography, we observed HAZV spike glycoproteins within infectious HAZV particles exposed to both high and low [K+], which showed that exposure to K+ alone results in dramatic changes to the ultrastructural architecture of the virion surface. In low [K+], the spikes adopted a compact conformation arranged in locally ordered arrays, whereas, following exposure to high [K+], the spikes became extended, and spike-membrane interactions were observed. Viruses exposed to high [K+] also displayed enhanced infectivity, thus identifying K+ as a newly defined trigger that helps promote viral infection. Finally, we confirmed that K+ channel blockers are inhibitory to HAZV infection, highlighting the potential of K+ channels as anti-bunyavirus targets.
Asunto(s)
Orthobunyavirus/efectos de los fármacos , Orthobunyavirus/fisiología , Potasio/farmacología , Internalización del Virus/efectos de los fármacos , Células A549 , Relación Dosis-Respuesta a Droga , Humanos , Orthobunyavirus/metabolismo , Canales de Potasio/metabolismo , Conformación Proteica/efectos de los fármacos , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/metabolismoRESUMEN
The family Hantaviridae mostly comprises rodent-borne segmented negative-sense RNA viruses, many of which are capable of causing devastating disease in humans. In contrast, hantavirus infection of rodent hosts results in a persistent and inapparent infection through their ability to evade immune detection and inhibit apoptosis. In this study, we used Tula hantavirus (TULV) to investigate the interplay between viral and host apoptotic responses during early, peak and persistent phases of virus infection in cell culture. Examination of early-phase TULV infection revealed that infected cells were refractory to apoptosis, as evidenced by the complete lack of cleaved caspase-3 (casp-3C) staining, whereas in non-infected bystander cells casp-3C was highly abundant. Interestingly, at later time points, casp-3C was abundant in infected cells, but the cells remained viable and able to continue shedding infectious virus, and together these observations were suggestive of a TULV-associated apoptotic block. To investigate this block, we viewed TULV-infected cells using laser scanning confocal and wide-field deconvolution microscopy, which revealed that TULV nucleocapsid protein (NP) colocalized with, and sequestered, casp-3C within cytoplasmic ultrastructures. Consistent with casp-3C colocalization, we showed for the first time that TULV NP was cleaved in cells and that TULV NP and casp-3C could be co-immunoprecipitated, suggesting that this interaction was stable and thus unlikely to be solely confined to NP binding as a substrate to the casp-3C active site. To account for these findings, we propose a novel mechanism by which TULV NP inhibits apoptosis by spatially sequestering casp-3C from its downstream apoptotic targets within the cytosol.
Asunto(s)
Apoptosis , Caspasa 3/metabolismo , Infecciones por Hantavirus/enzimología , Proteínas de la Nucleocápside/metabolismo , Orthohantavirus/metabolismo , Animales , Caspasa 3/genética , Citosol/enzimología , Citosol/virología , Orthohantavirus/genética , Infecciones por Hantavirus/genética , Infecciones por Hantavirus/fisiopatología , Infecciones por Hantavirus/virología , Interacciones Huésped-Patógeno , Humanos , Proteínas de la Nucleocápside/genética , Unión ProteicaRESUMEN
Human respiratory syncytial virus (HRSV) is a non-segmented negative stranded RNA virus and is recognized as the most important viral agent of lower respiratory tract infection worldwide, responsible for up to 199,000 deaths each year. The only FDA-approved regime to prevent HRSV-mediated disease is pre-exposure administration of a humanized HRSV-specific monoclonal antibody, which although being effective, is not in widespread usage due to its cost. No HRSV vaccine exists and so there remains a strong need for alternative and complementary anti-HRSV therapies. The HRSV M2-1 protein is a transcription factor and represents an attractive target for the development of antiviral compounds, based on its essential role in the viral replication cycle. To this end, a detailed analysis of M2-1 structure and functions will aid in identifying rational targets for structure-based antiviral drug design that can be developed in future translational research. Here we present an overview of the current understanding of the structure and function of HRSV M2-1, drawing on additional information derived from its structural homologues from other related viruses.
Asunto(s)
Virus Sincitial Respiratorio Humano , Replicación Viral/fisiología , Humanos , Virus Sincitial Respiratorio Humano/química , Virus Sincitial Respiratorio Humano/fisiología , Relación Estructura-Actividad , Proteínas Virales/química , Proteínas Virales/economía , Proteínas Virales/metabolismoRESUMEN
Bunyaviruses are considered to be emerging pathogens facilitated by the segmented nature of their genome that allows reassortment between different species to generate novel viruses with altered pathogenicity. Bunyaviruses are transmitted via a diverse range of arthropod vectors, as well as rodents, and have established a global disease range with massive importance in healthcare, animal welfare, and economics. There are no vaccines or anti-viral therapies available to treat human bunyavirus infections and so development of new anti-viral strategies is urgently required. Bunyamwera virus (BUNV; genus Orthobunyavirus) is the model bunyavirus, sharing aspects of its molecular and cellular biology with all Bunyaviridae family members. Here, we show for the first time that BUNV activates and requires cellular potassium (K(+)) channels to infect cells. Time of addition assays using K(+) channel modulating agents demonstrated that K(+) channel function is critical to events shortly after virus entry but prior to viral RNA synthesis/replication. A similar K(+) channel dependence was identified for other bunyaviruses namely Schmallenberg virus (Orthobunyavirus) as well as the more distantly related Hazara virus (Nairovirus). Using a rational pharmacological screening regimen, two-pore domain K(+) channels (K2P) were identified as the K(+) channel family mediating BUNV K(+) channel dependence. As several K2P channel modulators are currently in clinical use, our work suggests they may represent a new and safe drug class for the treatment of potentially lethal bunyavirus disease.
Asunto(s)
Antivirales/farmacología , Virus Bunyamwera/efectos de los fármacos , Infecciones por Bunyaviridae/tratamiento farmacológico , Interacciones Huésped-Patógeno/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Integración Viral/efectos de los fármacos , Aedes , Animales , Virus Bunyamwera/crecimiento & desarrollo , Virus Bunyamwera/fisiología , Infecciones por Bunyaviridae/metabolismo , Infecciones por Bunyaviridae/virología , Línea Celular , Chlorocebus aethiops , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Mesocricetus , Nairovirus/efectos de los fármacos , Nairovirus/crecimiento & desarrollo , Nairovirus/fisiología , Orthobunyavirus/efectos de los fármacos , Orthobunyavirus/crecimiento & desarrollo , Orthobunyavirus/fisiología , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Células VeroRESUMEN
The broad range of cellular functions governed by ion channels represents an attractive target for viral manipulation. Indeed, modulation of host cell ion channel activity by viral proteins is being increasingly identified as an important virus-host interaction. Recent examples have demonstrated that virion entry, virus egress and the maintenance of a cellular environment conducive to virus persistence are, in part, dependent on virus manipulation of ion channel activity. Most excitingly, evidence has emerged that targeting ion channels pharmacologically can impede virus life cycles. Here, we discuss current examples of virus-ion channel interactions and the potential of targeting ion channel function as a new, pharmacologically safe and broad-ranging anti-viral therapeutic strategy.
Asunto(s)
Antivirales/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Canales Iónicos/metabolismo , Virión/metabolismo , Internalización del Virus/efectos de los fármacos , Frecuencia Cardíaca , Humanos , Neuronas/virología , Enfermedades Respiratorias/virología , Proteínas Virales/metabolismo , Liberación del Virus/efectos de los fármacosRESUMEN
UNLABELLED: The Nairovirus genus of the Bunyaviridae family contains serious human and animal pathogens classified within multiple serogroups and species. Of these serogroups, the Crimean-Congo hemorrhagic fever virus (CCHFV) serogroup comprises sole members CCHFV and Hazara virus (HAZV). CCHFV is an emerging zoonotic virus that causes often-fatal hemorrhagic fever in infected humans for which preventative or therapeutic strategies are not available. In contrast, HAZV is nonpathogenic to humans and thus represents an excellent model to study aspects of CCHFV biology under conditions of more-accessible biological containment. The three RNA segments that form the nairovirus genome are encapsidated by the viral nucleocapsid protein (N) to form ribonucleoprotein (RNP) complexes that are substrates for RNA synthesis and packaging into virus particles. We used quantitative proteomics to identify cellular interaction partners of CCHFV N and identified robust interactions with cellular chaperones. These interactions were validated using immunological methods, and the specific interaction between native CCHFV N and cellular chaperones of the HSP70 family was confirmed during live CCHFV infection. Using infectious HAZV, we showed for the first time that the nairovirus N-HSP70 association was maintained within both infected cells and virus particles, where N is assembled as RNPs. Reduction of active HSP70 levels in cells by the use of small-molecule inhibitors significantly reduced HAZV titers, and a model for chaperone function in the context of high genetic variability is proposed. These results suggest that chaperones of the HSP70 family are required for nairovirus replication and thus represent a genetically stable cellular therapeutic target for preventing nairovirus-mediated disease. IMPORTANCE: Nairoviruses compose a group of human and animal viruses that are transmitted by ticks and associated with serious or fatal disease. One member is Crimean-Congo hemorrhagic fever virus (CCHFV), which is responsible for fatal human disease and is recognized as an emerging threat within Europe in response to climate change. No preventative or therapeutic strategies against nairovirus-mediated disease are currently available. Here we show that the N protein of CCHFV and the related Hazara virus interact with a cellular protein, HSP70, during both the intracellular and extracellular stages of the virus life cycle. The use of inhibitors that block HSP70 function reduces virus titers by up to 1,000-fold, suggesting that this interaction is important within the context of the nairovirus life cycle and may represent a potent target for antinairovirus therapies against which the virus cannot easily develop resistance.
Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Nairovirus/genética , Nairovirus/metabolismo , Proteínas de la Nucleocápside/metabolismo , Replicación Viral/genética , Células A549 , Línea Celular , Línea Celular Tumoral , Cambio Climático , Europa (Continente) , Células HEK293 , Fiebre Hemorrágica de Crimea/metabolismo , Fiebre Hemorrágica de Crimea/virología , Humanos , ARN/genéticaRESUMEN
UNLABELLED: Human respiratory syncytial virus (HRSV) is a major cause of serious respiratory tract infection. Treatment options include administration of ribavirin, a purine analog, although the mechanism of its anti-HRSV activity is unknown. We used transcriptome sequencing (RNA-seq) to investigate the genome mutation frequency and viral mRNA accumulation in HRSV-infected cells that were left untreated or treated with ribavirin. In the absence of ribavirin, HRSV-specific transcripts accounted for up to one-third of total RNA reads from the infected-cell RNA population. Ribavirin treatment resulted in a >90% reduction in abundance of viral mRNA reads, while at the same time no such reduction was detected for the abundance of cellular transcripts. The presented data reveal that ribavirin significantly increases the frequency of HRSV-specific RNA mutations, suggesting a direct influence on the fidelity of the HRSV polymerase. The presented data show that transitions and transversions occur during HRSV replication and that these changes occur in hot spots along the HRSV genome. Examination of nucleotide substitution rates in the viral genome indicated an increase in the frequency of transition but not transversion mutations in the presence of ribavirin. In addition, our data indicate that in the continuous cell types used and at the time points analyzed, the abundances of some HRSV mRNAs do not reflect the order in which the mRNAs are transcribed. IMPORTANCE: Human respiratory syncytial virus (HRSV) is a major pediatric pathogen. Ribavirin can be used in children who are extremely ill to reduce the amount of virus and to lower the burden of disease. Ribavirin is used as an experimental therapy with other viruses. The mechanism of action of ribavirin against HRSV is not well understood, although it is thought to increase the mutation rate of the viral polymerase during replication. To investigate this hypothesis, we used a high-resolution approach that allowed us to determine the genetic sequence of the virus to a great depth of coverage. We found that ribavirin did not cause a detectable change in the relative amounts of viral mRNA transcripts. However, we found that ribavirin treatment did indeed cause an increase in the number of mutations, which was associated with a decrease in virus production.
Asunto(s)
Antivirales/farmacología , Mutación , ARN Viral/genética , Virus Sincitial Respiratorio Humano/efectos de los fármacos , Virus Sincitial Respiratorio Humano/fisiología , Ribavirina/farmacología , Transcriptoma , Genoma Viral/efectos de los fármacos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Interferón beta/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/enzimología , Virus Sincitial Respiratorio Humano/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética , Ensayo de Placa Viral , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacosRESUMEN
The M2-1 protein of the important pathogen human respiratory syncytial virus is a zinc-binding transcription antiterminator that is essential for viral gene expression. We present the crystal structure of full-length M2-1 protein in its native tetrameric form at a resolution of 2.5 Å. The structure reveals that M2-1 forms a disk-like assembly with tetramerization driven by a long helix forming a four-helix bundle at its center, further stabilized by contact between the zinc-binding domain and adjacent protomers. The tetramerization helix is linked to a core domain responsible for RNA binding activity by a flexible region on which lie two functionally critical serine residues that are phosphorylated during infection. The crystal structure of a phosphomimetic M2-1 variant revealed altered charge density surrounding this flexible region although its position was unaffected. Structure-guided mutagenesis identified residues that contributed to RNA binding and antitermination activity, revealing a strong correlation between these two activities, and further defining the role of phosphorylation in M2-1 antitermination activity. The data we present here identify surfaces critical for M2-1 function that may be targeted by antiviral compounds.
Asunto(s)
Virus Sincitiales Respiratorios/metabolismo , Proteínas Virales/química , Biopolímeros/metabolismo , Cristalografía por Rayos X , Humanos , Resonancia Magnética Nuclear Biomolecular , Fosforilación , Conformación Proteica , ARN/metabolismo , Proteínas Virales/metabolismoRESUMEN
Ebola virus (EBOV) infection results in severe disease and in some cases lethal hemorrhagic fever. The infection is directed by seven viral genes that encode nine viral proteins. By definition, viruses are obligate intracellular parasites and require aspects of host cell biology in order to replicate their genetic material, assemble new virus particles, and subvert host cell antiviral responses. Currently licensed antivirals are targeted against viral proteins to inhibit their function. However, experience with treating HIV and influenza virus demonstrates that resistant viruses are soon selected. An emerging area in virology is to transiently target host cell proteins that play critical proviral roles in virus biology, especially for acute infections. This has the advantage that the protein being targeted is evolutionary removed from the genome of the virus. Proteomics can aid in discovery biology and identify cellular proteins that may be utilized by the virus to facilitate infection. This work focused on defining the interactome of the EBOV nucleoprotein and identified that cellular chaperones, including HSP70, associate with this protein to promote stability. Utilization of a mini-genome replication system based on a recent Makona isolate demonstrated that disrupting the stability of NP had an adverse effect on viral RNA synthesis.
Asunto(s)
Ebolavirus/fisiología , Chaperonas Moleculares/metabolismo , Nucleoproteínas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Terapia Molecular Dirigida/métodos , Nucleoproteínas/química , Estabilidad Proteica , Provirus , ARN Viral/biosíntesis , Proteínas Virales/metabolismo , Replicación ViralRESUMEN
UNLABELLED: The human respiratory syncytial virus (HRSV) core viral RNA polymerase comprises the large polymerase protein (L) and its cofactor, the phosphoprotein (P), which associate with the viral ribonucleoprotein complex to replicate the genome and, together with the M2-1 protein, transcribe viral mRNAs. While cellular proteins have long been proposed to be involved in the synthesis of HRSV RNA by associating with the polymerase complex, their characterization has been hindered by the difficulty of purifying the viral polymerase from mammalian cell culture. In this study, enhanced green fluorescent protein (EGFP)-tagged L- and P-protein expression was coupled with high-affinity anti-GFP antibody-based immunoprecipitation and quantitative proteomics to identify cellular proteins that interacted with either the L- or the P-proteins when expressed as part of a biologically active viral RNP. Several core groups of cellular proteins were identified that interacted with each viral protein including, in both cases, protein chaperones. Ablation of chaperone activity by using small-molecule inhibitors confirmed previously reported studies which suggested that this class of proteins acted as positive viral factors. Inhibition of HSP90 chaperone function in the current study showed that HSP90 is critical for L-protein function and stability, whether in the presence or absence of the P-protein. Inhibition studies suggested that HSP70 also disrupts virus biology and might help the polymerase remodel the nucleocapsid to allow RNA synthesis to occur efficiently. This indicated a proviral role for protein chaperones in HRSV replication and demonstrates that the function of cellular proteins can be targeted as potential therapeutics to disrupt virus replication. IMPORTANCE: Human respiratory syncytial virus (HRSV) represents a major health care and economic burden, being the main cause of severe respiratory infections in infants worldwide. No vaccine or effective therapy is available. This study focused on identifying those cellular proteins that potentially interact specifically with the viral proteins that are central to virus replication and transcription, with a view to providing potential targets for the development of a specific, transient therapeutic which disrupts virus biology but prevents the emergence of resistance, while maintaining cell viability. In particular, protein chaperones (heat shock proteins 70 and 90), which aid protein folding and function, were identified. The mechanism by which these chaperones contribute to virus biology was tested, and this study demonstrates to the field that cellular protein chaperones may be required for maintaining the correct folding and therefore functionality of specific proteins within the virus replication complex.
Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Interacciones Huésped-Patógeno , Chaperonas Moleculares/metabolismo , Mapas de Interacción de Proteínas , Virus Sincitial Respiratorio Humano/fisiología , Proteínas Virales/metabolismo , Replicación Viral , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas , Estabilidad ProteicaRESUMEN
BACKGROUND: Hazara virus (HAZV) is a member of the Bunyaviridae family of segmented negative stranded RNA viruses, and shares the same serogroup as Crimean-Congo haemorrhagic fever virus (CCHFV). CCHFV is responsible for fatal human disease with a mortality rate approaching 30 %, which has an increased recent incidence within southern Europe. There are no preventative or therapeutic treatments for CCHFV-mediated disease, and thus CCHFV is classified as a hazard group 4 pathogen. In contrast HAZV is not associated with serious human disease, although infection of interferon receptor knockout mice with either CCHFV or HAZV results in similar disease progression. To characterise further similarities between HAZV and CCHFV, and support the use of HAZV as a model for CCHFV infection, we investigated the structure of the HAZV nucleocapsid protein (N) and compared it to CCHFV N. N performs an essential role in the viral life cycle by encapsidating the viral RNA genome, and thus, N represents a potential therapeutic target. RESULTS: We present the purification, crystallisation and crystal structure of HAZV N at 2.7 Å resolution. HAZV N was expressed as an N-terminal glutathione S-transferase (GST) fusion protein then purified using glutathione affinity chromatography followed by ion-exchange chromatography. HAZV N crystallised in the P212121 space group with unit cell parameters a = 64.99, b = 76.10, and c = 449.28 Å. HAZV N consists of a globular domain formed mostly of alpha helices derived from both the N- and C-termini, and an arm domain comprising two long alpha helices. HAZV N has a similar overall structure to CCHFV N, with their globular domains superposing with an RMSD = 0.70 Å, over 368 alpha carbons that share 59 % sequence identity. Four HAZV N monomers crystallised in the asymmetric unit, and their head-to-tail assembly reveals a potential interaction site between monomers. CONCLUSIONS: The crystal structure of HAZV N reveals a close similarity to CCHFV N, supporting the use of HAZV as a model for CCHFV. Structural similarity between the N proteins should facilitate study of the CCHFV and HAZV replication cycles without the necessity of working under containment level 4 (CL-4) conditions.
Asunto(s)
Nairovirus , Proteínas de la Nucleocápside/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de la Nucleocápside/genética , Proteínas de la Nucleocápside/aislamiento & purificación , Proteínas de la Nucleocápside/metabolismo , Estructura Secundaria de Proteína , Electricidad EstáticaRESUMEN
All orthobunyaviruses possess three genome segments of single-stranded negative sense RNA that are encapsidated with the virus-encoded nucleocapsid (N) protein to form a ribonucleoprotein (RNP) complex, which is uncharacterized at high resolution. We report the crystal structure of both the Bunyamwera virus (BUNV) N-RNA complex and the unbound Schmallenberg virus (SBV) N protein, at resolutions of 3.20 and 2.75 Å, respectively. Both N proteins crystallized as ring-like tetramers and exhibit a high degree of structural similarity despite classification into different orthobunyavirus serogroups. The structures represent a new RNA-binding protein fold. BUNV N possesses a positively charged groove into which RNA is deeply sequestered, with the bases facing away from the solvent. This location is highly inaccessible, implying that RNA polymerization and other critical base pairing events in the virus life cycle require RNP disassembly. Mutational analysis of N protein supports a correlation between structure and function. Comparison between these crystal structures and electron microscopy images of both soluble tetramers and authentic RNPs suggests the N protein does not bind RNA as a repeating monomer; thus, it represents a newly described architecture for bunyavirus RNP assembly, with implications for many other segmented negative-strand RNA viruses.