Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Am J Hum Genet ; 102(3): 505-514, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499166

RESUMEN

Although mutations in more than 90 genes are known to cause CMT, the underlying genetic cause of CMT remains unknown in more than 50% of affected individuals. The discovery of additional genes that harbor CMT2-causing mutations increasingly depends on sharing sequence data on a global level. In this way-by combining data from seven countries on four continents-we were able to define mutations in ATP1A1, which encodes the alpha1 subunit of the Na+,K+-ATPase, as a cause of autosomal-dominant CMT2. Seven missense changes were identified that segregated within individual pedigrees: c.143T>G (p.Leu48Arg), c.1775T>C (p.Ile592Thr), c.1789G>A (p.Ala597Thr), c.1801_1802delinsTT (p.Asp601Phe), c.1798C>G (p.Pro600Ala), c.1798C>A (p.Pro600Thr), and c.2432A>C (p.Asp811Ala). Immunostaining peripheral nerve axons localized ATP1A1 to the axolemma of myelinated sensory and motor axons and to Schmidt-Lanterman incisures of myelin sheaths. Two-electrode voltage clamp measurements on Xenopus oocytes demonstrated significant reduction in Na+ current activity in some, but not all, ouabain-insensitive ATP1A1 mutants, suggesting a loss-of-function defect of the Na+,K+ pump. Five mutants fall into a remarkably narrow motif within the helical linker region that couples the nucleotide-binding and phosphorylation domains. These findings identify a CMT pathway and a potential target for therapy development in degenerative diseases of peripheral nerve axons.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Genes Dominantes , Mutación/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Adulto , Anciano , Anciano de 80 o más Años , Secuencia de Aminoácidos , Niño , Familia , Femenino , Humanos , Masculino , Persona de Mediana Edad , Linaje , ATPasa Intercambiadora de Sodio-Potasio/química , Adulto Joven
2.
Proc Natl Acad Sci U S A ; 114(35): E7367-E7376, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28808020

RESUMEN

KCNE ß-subunits assemble with and modulate the properties of voltage-gated K+ channels. In the heart, KCNE1 associates with the α-subunit KCNQ1 to generate the slowly activating, voltage-dependent potassium current (IKs) in the heart that controls the repolarization phase of cardiac action potentials. By contrast, in epithelial cells from the colon, stomach, and kidney, KCNE3 coassembles with KCNQ1 to form K+ channels that are voltage-independent K+ channels in the physiological voltage range and important for controlling water and salt secretion and absorption. How KCNE1 and KCNE3 subunits modify KCNQ1 channel gating so differently is largely unknown. Here, we use voltage clamp fluorometry to determine how KCNE1 and KCNE3 affect the voltage sensor and the gate of KCNQ1. By separating S4 movement and gate opening by mutations or phosphatidylinositol 4,5-bisphosphate depletion, we show that KCNE1 affects both the S4 movement and the gate, whereas KCNE3 affects the S4 movement and only affects the gate in KCNQ1 if an intact S4-to-gate coupling is present. Further, we show that a triple mutation in the middle of the transmembrane (TM) segment of KCNE3 introduces KCNE1-like effects on the second S4 movement and the gate. In addition, we show that differences in two residues at the external end of the KCNE TM segments underlie differences in the effects of the different KCNEs on the first S4 movement and the voltage sensor-to-gate coupling.


Asunto(s)
Canal de Potasio KCNQ1/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Potenciales de Acción , Animales , Humanos , Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/metabolismo , Canal de Potasio KCNQ1/fisiología , Potenciales de la Membrana/fisiología , Mutagénesis Sitio-Dirigida/métodos , Oocitos/metabolismo , Técnicas de Placa-Clamp/métodos , Canales de Potasio con Entrada de Voltaje/fisiología , Xenopus laevis/embriología , Xenopus laevis/fisiología
3.
Proc Natl Acad Sci U S A ; 113(40): E5962-E5971, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27647906

RESUMEN

Voltage-gated proton (Hv1) channels are involved in many physiological processes, such as pH homeostasis and the innate immune response. Zn2+ is an important physiological inhibitor of Hv1. Sperm cells are quiescent in the male reproductive system due to Zn2+ inhibition of Hv1 channels, but become active once introduced into the low-Zn2+-concentration environment of the female reproductive tract. How Zn2+ inhibits Hv1 is not completely understood. In this study, we use the voltage clamp fluorometry technique to identify the molecular mechanism of Zn2+ inhibition of Hv1. We find that Zn2+ binds to both the activated closed and resting closed states of the Hv1 channel, thereby inhibiting both voltage sensor motion and gate opening. Mutations of some Hv1 residues affect only Zn2+ inhibition of the voltage sensor motion, whereas mutations of other residues also affect Zn2+ inhibition of gate opening. These effects are similar in monomeric and dimeric Hv1 channels, suggesting that the Zn2+-binding sites are localized within each subunit of the dimeric Hv1. We propose that Zn2+ binding has two major effects on Hv1: (i) at low concentrations, Zn2+ binds to one site and prevents the opening conformational change of the pore of Hv1, thereby inhibiting proton conduction; and (ii) at high concentrations, Zn2+, in addition, binds to a second site and inhibits the outward movement of the voltage sensor of Hv1. Elucidating the molecular mechanism of how Zn2+ inhibits Hv1 will further our understanding of Hv1 function and might provide valuable information for future drug development for Hv1 channels.


Asunto(s)
Activación del Canal Iónico/genética , Canales Iónicos/genética , Zinc/metabolismo , Animales , Sitios de Unión , Femenino , Fluorometría/métodos , Humanos , Concentración de Iones de Hidrógeno , Inmunidad Innata/genética , Canales Iónicos/metabolismo , Mutación , Técnicas de Placa-Clamp/métodos , Protones , Xenopus laevis/metabolismo , Zinc/química
4.
Proc Natl Acad Sci U S A ; 112(52): E7286-92, 2015 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668384

RESUMEN

KCNE ß-subunits assemble with and modulate the properties of voltage-gated K(+) channels. In the colon, stomach, and kidney, KCNE3 coassembles with the α-subunit KCNQ1 to form K(+) channels important for K(+) and Cl(-) secretion that appear to be voltage-independent. How KCNE3 subunits turn voltage-gated KCNQ1 channels into apparent voltage-independent KCNQ1/KCNE3 channels is not completely understood. Different mechanisms have been proposed to explain the effect of KCNE3 on KCNQ1 channels. Here, we use voltage clamp fluorometry to determine how KCNE3 affects the voltage sensor S4 and the gate of KCNQ1. We find that S4 moves in KCNQ1/KCNE3 channels, and that inward S4 movement closes the channel gate. However, KCNE3 shifts the voltage dependence of S4 movement to extreme hyperpolarized potentials, such that in the physiological voltage range, the channel is constitutively conducting. By separating S4 movement and gate opening, either by a mutation or PIP2 depletion, we show that KCNE3 directly affects the S4 movement in KCNQ1. Two negatively charged residues of KCNE3 (D54 and D55) are found essential for the effect of KCNE3 on KCNQ1 channels, mainly exerting their effects by an electrostatic interaction with R228 in S4. Our results suggest that KCNE3 primarily affects the voltage-sensing domain and only indirectly affects the gate.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/fisiología , Oocitos/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Animales , Arginina/genética , Arginina/metabolismo , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Sitios de Unión/genética , Femenino , Humanos , Activación del Canal Iónico/genética , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Potenciales de la Membrana , Modelos Biológicos , Mutación , Oocitos/metabolismo , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica , Xenopus laevis
5.
Proc Natl Acad Sci U S A ; 112(18): 5714-9, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25901329

RESUMEN

Polyunsaturated fatty acids (PUFAs) affect cardiac excitability. Kv7.1 and the ß-subunit KCNE1 form the cardiac IKs channel that is central for cardiac repolarization. In this study, we explore the prospects of PUFAs as IKs channel modulators. We report that PUFAs open Kv7.1 via an electrostatic mechanism. Both the polyunsaturated acyl tail and the negatively charged carboxyl head group are required for PUFAs to open Kv7.1. We further show that KCNE1 coexpression abolishes the PUFA effect on Kv7.1 by promoting PUFA protonation. PUFA analogs with a decreased pKa value, to preserve their negative charge at neutral pH, restore the sensitivity to open IKs channels. PUFA analogs with a positively charged head group inhibit IKs channels. These different PUFA analogs could be developed into drugs to treat cardiac arrhythmias. In support of this possibility, we show that PUFA analogs act antiarrhythmically in embryonic rat cardiomyocytes and in isolated perfused hearts from guinea pig.


Asunto(s)
Antiarrítmicos/metabolismo , Arritmias Cardíacas/tratamiento farmacológico , Ácidos Grasos Insaturados/metabolismo , Canal de Potasio KCNQ1/química , Mutación , Animales , Conductividad Eléctrica , Femenino , Cobayas , Corazón/efectos de los fármacos , Humanos , Canal de Potasio KCNQ1/genética , Microscopía Electrónica de Rastreo , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Oocitos/metabolismo , Perfusión , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley , Electricidad Estática , Xenopus laevis
6.
Am J Physiol Cell Physiol ; 308(1): C21-32, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25209263

RESUMEN

Epithelial tissues are characterized by specialized cell-cell junctions, typically localized to the apical regions of cells. These junctions are formed by interacting membrane proteins and by cytoskeletal and extracellular matrix components. Within the lingual epithelium, tight junctions join the apical tips of the gustatory sensory cells in taste buds. These junctions constitute a selective barrier that limits penetration of chemosensory stimuli into taste buds (Michlig et al. J Comp Neurol 502: 1003-1011, 2007). We tested the ability of chemical compounds to permeate into sensory end organs in the lingual epithelium. Our findings reveal a robust barrier that surrounds the entire body of taste buds, not limited to the apical tight junctions. This barrier prevents penetration of many, but not all, compounds, whether they are applied topically, injected into the parenchyma of the tongue, or circulating in the blood supply, into taste buds. Enzymatic treatments indicate that this barrier likely includes glycosaminoglycans, as it was disrupted by chondroitinase but, less effectively, by proteases. The barrier surrounding taste buds could also be disrupted by brief treatment of lingual tissue samples with DMSO. Brief exposure of lingual slices to DMSO did not affect the ability of taste buds within the slice to respond to chemical stimulation. The existence of a highly impermeable barrier surrounding taste buds and methods to break through this barrier may be relevant to basic research and to clinical treatments of taste.


Asunto(s)
Células Epiteliales/metabolismo , Papilas Gustativas/metabolismo , Gusto , Uniones Estrechas/metabolismo , Lengua/inervación , Animales , Dimetilsulfóxido/farmacología , Enzimas/metabolismo , Células Epiteliales/efectos de los fármacos , Fluoresceínas/química , Fluoresceínas/metabolismo , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Potenciales de la Membrana , Ratones Endogámicos C57BL , Peso Molecular , Permeabilidad , Solventes/farmacología , Estimulación Química , Papilas Gustativas/citología , Papilas Gustativas/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos
7.
J Physiol ; 593(12): 2605-15, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25653179

RESUMEN

The KCNQ1 channel (also called Kv7.1 or KvLQT1) belongs to the superfamily of voltage-gated K(+) (Kv) channels. KCNQ1 shares several general features with other Kv channels but also displays a fascinating flexibility in terms of the mechanism of channel gating, which allows KCNQ1 to play different physiological roles in different tissues. This flexibility allows KCNQ1 channels to function as voltage-independent channels in epithelial tissues, whereas KCNQ1 function as voltage-activated channels with very slow kinetics in cardiac tissues. This flexibility is in part provided by the association of KCNQ1 with different accessory KCNE ß-subunits and different modulators, but also seems like an integral part of KCNQ1 itself. The aim of this review is to describe the main mechanisms underlying KCNQ1 flexibility.


Asunto(s)
Canal de Potasio KCNQ1/fisiología , Humanos , Activación del Canal Iónico , Canal de Potasio KCNQ1/química
8.
Proc Natl Acad Sci U S A ; 109(18): 7103-8, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22509038

RESUMEN

KCNQ1 (Kv7.1) is a unique member of the superfamily of voltage-gated K(+) channels in that it displays a remarkable range of gating behaviors tuned by coassembly with different ß subunits of the KCNE family of proteins. To better understand the basis for the biophysical diversity of KCNQ1 channels, we here investigate the basis of KCNQ1 gating in the absence of ß subunits using voltage-clamp fluorometry (VCF). In our previous study, we found the kinetics and voltage dependence of voltage-sensor movements are very similar to those of the channel gate, as if multiple voltage-sensor movements are not required to precede gate opening. Here, we have tested two different hypotheses to explain KCNQ1 gating: (i) KCNQ1 voltage sensors undergo a single concerted movement that leads to channel opening, or (ii) individual voltage-sensor movements lead to channel opening before all voltage sensors have moved. Here, we find that KCNQ1 voltage sensors move relatively independently, but that the channel can conduct before all voltage sensors have activated. We explore a KCNQ1 point mutation that causes some channels to transition to the open state even in the absence of voltage-sensor movement. To interpret these results, we adopt an allosteric gating scheme wherein KCNQ1 is able to transition to the open state after zero to four voltage-sensor movements. This model allows for widely varying gating behavior, depending on the relative strength of the opening transition, and suggests how KCNQ1 could be controlled by coassembly with different KCNE family members.


Asunto(s)
Activación del Canal Iónico , Canal de Potasio KCNQ1/metabolismo , Sitio Alostérico , Sustitución de Aminoácidos , Animales , Femenino , Humanos , Técnicas In Vitro , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/genética , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Oocitos/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
9.
bioRxiv ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38559162

RESUMEN

A truncated form of the ATP release channel pannexin 1 (Panx1), Panx1 1-89 , is enriched in metastatic breast cancer cells and has been proposed to mediate metastatic cell survival by increasing ATP release through mechanosensitive Panx1 channels. However, whether Panx1 1-89 on its own (without the presence of wtPanx1) mediates ATP release has not been tested. Here, we show that Panx1 1-89 by itself can form a constitutively active membrane channel, capable of releasing ATP even in the absence of wild type Panx1. Our biophysical characterization reveals that most basic structure-function features of the channel pore are conserved in the truncated Panx1 1-89 peptide. Thus, augmenting extracellular potassium ion concentrations enhances Panx1 1-89 -mediated conductance. Moreover, despite the severe truncation, Panx1 1-89 retains the sensitivity to most of wtPanx1 channel inhibitors and can thus be targeted. Therefore, Panx1 blockers have the potential to be of therapeutic value to combat metastatic cell survival. Our study not only elucidates a mechanism for ATP release from cancer cells, but it also supports that the Panx1 1-89 mutant should facilitate structure-function analysis of Panx1 channels.

10.
J Neurosci ; 31(15): 5782-91, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21490220

RESUMEN

Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits ß2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) ß3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.


Asunto(s)
Antagonistas del GABA/farmacología , Receptores de GABA/fisiología , Papilas Gustativas/efectos de los fármacos , Ácido gamma-Aminobutírico/fisiología , Animales , Células CHO , Calcio/metabolismo , Cricetinae , Cricetulus , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Neurotransmisores/metabolismo , ARN/genética , Receptores de GABA/genética , Receptores Presinapticos/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Gusto/efectos de los fármacos , Ácido gamma-Aminobutírico/farmacología
12.
Elife ; 112022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35642783

RESUMEN

Neuronal KCNQ channels mediate the M-current, a key regulator of membrane excitability in the central and peripheral nervous systems. Mutations in KCNQ2 channels cause severe neurodevelopmental disorders, including epileptic encephalopathies. However, the impact that different mutations have on channel function remains poorly defined, largely because of our limited understanding of the voltage-sensing mechanisms that trigger channel gating. Here, we define the parameters of voltage sensor movements in wt-KCNQ2 and channels bearing epilepsy-associated mutations using cysteine accessibility and voltage clamp fluorometry (VCF). Cysteine modification reveals that a stretch of eight to nine amino acids in the S4 becomes exposed upon voltage sensing domain activation of KCNQ2 channels. VCF shows that the voltage dependence and the time course of S4 movement and channel opening/closing closely correlate. VCF reveals different mechanisms by which different epilepsy-associated mutations affect KCNQ2 channel voltage-dependent gating. This study provides insight into KCNQ2 channel function, which will aid in uncovering the mechanisms underlying channelopathies.


Asunto(s)
Epilepsia , Canal de Potasio KCNQ2 , Trastornos del Neurodesarrollo , Cisteína/genética , Epilepsia/genética , Humanos , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Mutación , Trastornos del Neurodesarrollo/genética
13.
J Biol Chem ; 284(43): 29405-12, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-17003041

RESUMEN

Epithelial cells express calcium-activated Cl(-) channels of unknown molecular identity. These Cl(-) channels play a central role in diseases such as secretory diarrhea, polycystic kidney disease, and cystic fibrosis. The family of bestrophins has been suggested to form calcium-activated Cl(-) channels. Here, we demonstrate molecular and functional expression of bestrophin-1 (BEST1) in mouse and human airways, colon, and kidney. Endogenous calcium-activated whole cell Cl(-) currents coincide with endogenous expression of the Vmd2 gene product BEST1 in murine and human epithelial cells, whereas calcium-activated Cl(-) currents are absent in epithelial tissues lacking BEST1 expression. Blocking expression of BEST1 with short interfering RNA or applying an anti-BEST1 antibody to a patch pipette suppressed ATP-induced whole cell Cl(-) currents. Calcium-dependent Cl(-) currents were activated by ATP in HEK293 cells expressing BEST1. Thus, BEST1 may form the Ca2+-activated Cl(-) current, or it may be a component of a Cl(-) channel complex in epithelial tissues.


Asunto(s)
Calcio/metabolismo , Cloruros/metabolismo , Células Epiteliales/metabolismo , Proteínas del Ojo/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Bestrofinas , Línea Celular , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Epitelio/metabolismo , Proteínas del Ojo/genética , Humanos , Canales Iónicos , Ratones , Especificidad de Órganos/fisiología
14.
Pflugers Arch ; 459(3): 485-97, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19823864

RESUMEN

Bestrophins form Ca(2+)-activated Cl(-) channels and regulate intracellular Ca(2+) signaling. We demonstrate that bestrophin 1 is localized in the endoplasmic reticulum (ER), where it interacts with stromal interacting molecule 1, the ER-Ca(2+) sensor. Intracellular Ca(2+) transients elicited by stimulation of purinergic P2Y(2) receptors in HEK293 cells were augmented by hBest1. The p21-activated protein kinase Pak2 was found to phosphorylate hBest1, thereby enhancing Ca(2+) signaling and activation of Ca(2+)-dependent Cl(-) (TMEM16A) and K(+) (SK4) channels. Lack of bestrophin 1 expression in respiratory epithelial cells of mBest1 knockout mice caused expansion of ER cisterns and induced Ca(2+) deposits. hBest1 is, therefore, important for Ca(2+) handling of the ER store and may resemble the long-suspected counterion channel to balance transient membrane potentials occurring through inositol triphosphate (IP(3))-induced Ca(2+) release and store refill. Thus, bestrophin 1 regulates compartmentalized Ca(2+) signaling that plays an essential role in Best macular dystrophy, inflammatory diseases such as cystic fibrosis, as well as proliferation.


Asunto(s)
Canales de Cloruro/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas del Ojo/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Animales , Anoctamina-1 , Bestrofinas , Calcio/metabolismo , Señalización del Calcio/fisiología , Línea Celular , Canales de Cloruro/genética , Retículo Endoplásmico/ultraestructura , Proteínas del Ojo/genética , Humanos , Canales Iónicos , Degeneración Macular/metabolismo , Ratones , Ratones Noqueados , Oocitos/citología , Oocitos/metabolismo , Técnicas de Placa-Clamp , Interferencia de ARN , Receptores Purinérgicos P2/metabolismo , Receptores Purinérgicos P2Y2 , Xenopus laevis , Quinasas p21 Activadas/metabolismo
15.
J Am Soc Nephrol ; 20(7): 1556-64, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19470678

RESUMEN

Bestrophin 1 (Best1) controls intracellular Ca(2+) concentration, induces Ca(2+)-activated Cl(-) conductance, and increases proliferation of colon carcinoma cells. Here, we show that expression of Best1 in mouse renal collecting duct (CD) cells causes i) an increase in cell proliferation, ii) a loss of amiloride-sensitive Na(+) absorption, iii) induction of Ca(2+)-dependent Cl(-) conductance (CaCC), and iv) epithelial-to-mesenchymal transition. During conditions of high proliferation or when we exposed CD cells to serum or TGF-beta1, we observed upregulation of Best1, increased CaCC, redistribution of the epithelial-to-mesenchymal transition marker beta-catenin, and upregulation of vimentin. In contrast, suppression of Best1 by RNAi inhibited proliferation, reduced CaCC, and downregulated markers of EMT. CaCC and expression of Best1 were independent of the cell cycle but clearly correlated to cell proliferation and cell density. During renal inflammation in LPS-treated mice or after unilateral ureteral obstruction, we observed transient upregulation of Best1. These data indicate that repression of cell proliferation, CaCC, and expression of Best1 occurs during mesenchymal-to-epithelial transition once CD cells polarize and terminally differentiate. These results may suggest a role for Best1 in renal fibrosis and tissue repair.


Asunto(s)
Diferenciación Celular/fisiología , Células Epiteliales/citología , Proteínas del Ojo/metabolismo , Túbulos Renales Colectores/citología , Túbulos Renales Colectores/metabolismo , Mesodermo/citología , Animales , Bestrofinas , Calcio/metabolismo , Proliferación Celular , Células Cultivadas , Canales de Cloruro/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/patología , Canales Iónicos , Lipopolisacáridos/efectos adversos , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Sodio/metabolismo , Vimentina/metabolismo , beta Catenina/metabolismo
16.
Biochim Biophys Acta ; 1783(10): 1993-2000, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18652850

RESUMEN

Ca(2+) activated Cl(-) transport is found in airways and other organs and is abnormal in cystic fibrosis, polycystic kidney disease and infectious diarrhea. The molecular identity of Ca(2+) activated Cl(-) channels (CaCC) in the airways is still obscure. Bestrophin proteins were described to form CaCC and to regulate voltage gated Ca(2+) channels. The present Ussing chamber recordings on tracheas of bestrophin 1 knockout (vmd2(-/-)) mice indicate a reduced Cl(-) secretion when activated by the purinergic agonist ATP (0.1-1 muM). As two paralogs, best1 and best2, are present in mouse tracheal epithelium, we examined the contribution of each paralog to Ca(2+) activated Cl(-) secretion. In whole cell patch-clamp measurements on primary airway epithelial cells from vmd2(-/-) tracheas, ATP activated Cl(-) currents were reduced by 50%. Additional knockdown of mbest2 in vmd2(-/-) cells by short interfering RNA further suppressed ATP-induced Cl(-) currents down to 20% of that observed in cells from vmd2(+/+) animals. Moreover, RNAi-suppression of both mbest1 and mbest2 reduced CaCC in vmd2(+/+) cells. Direct activation of CaCC by increase of intracellular Ca(2+) was also reduced in whole cell recordings of vmd2(-/-) cells. These results clearly suggest a role of bestrophin 1 and 2 for Ca(2+) dependent Cl(-) secretion in mouse airways.


Asunto(s)
Calcio/metabolismo , Canales de Cloruro/metabolismo , Cloro/metabolismo , Proteínas del Ojo/metabolismo , Tráquea/metabolismo , Animales , Bestrofinas , Células Cultivadas , Canales de Cloruro/deficiencia , Canales de Cloruro/genética , Electrofisiología , Proteínas del Ojo/genética , Canales Iónicos , Ratones , Ratones Noqueados , Técnicas de Placa-Clamp
17.
J Gen Physiol ; 151(2): 247-257, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30578330

RESUMEN

One of the major factors known to cause neuronal hyperexcitability is malfunction of the potassium channels formed by KCNQ2 and KCNQ3. These channel subunits underlie the M current, which regulates neuronal excitability. Here, I investigate the molecular mechanisms by which epilepsy-associated mutations in the voltage sensor (S4) of KCNQ3 cause channel malfunction. Voltage clamp fluorometry reveals that the R230C mutation in KCNQ3 allows S4 movement but shifts the open/closed transition of the gate to very negative potentials. This results in the mutated channel remaining open throughout the physiological voltage range. Substitution of R230 with natural and unnatural amino acids indicates that the functional effect of the arginine residue at position 230 depends on both its positive charge and the size of its side chain. I find that KCNQ3-R230C is hard to close, but it is capable of being closed at strong negative voltages. I suggest that compounds that shift the voltage dependence of S4 activation to more positive potentials would promote gate closure and thus have therapeutic potential.


Asunto(s)
Epilepsia/genética , Activación del Canal Iónico , Canal de Potasio KCNQ3/metabolismo , Mutación , Animales , Humanos , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/genética , Potenciales de la Membrana , Xenopus
18.
Sci Rep ; 9(1): 19622, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873081

RESUMEN

Fast, precise and sustained neurotransmission requires graded Ca2+ signals at the presynaptic terminal. Neurotransmitter release depends on a complex interplay of Ca2+ fluxes and Ca2+ buffering in the presynaptic terminal that is not fully understood. Here, we show that the angiotensin-receptor-associated protein (ATRAP) localizes to synaptic terminals throughout the central nervous system. In the retinal photoreceptor synapse and the cerebellar mossy fiber-granule cell synapse, we find that ATRAP is involved in the generation of depolarization-evoked synaptic Ca2+ transients. Compared to wild type, Ca2+ imaging in acutely isolated preparations of the retina and the cerebellum from ATRAP knockout mice reveals a significant reduction of the sarcoendoplasmic reticulum (SR) Ca2+-ATPase (SERCA) activity. Thus, in addition to its conventional role in angiotensin signaling, ATRAP also modulates presynaptic Ca2+ signaling within the central nervous system.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Señalización del Calcio , Potenciales Evocados Visuales , Fibras Musgosas del Hipocampo/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Femenino , Masculino , Ratones
19.
Cell Physiol Biochem ; 22(1-4): 79-92, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18769034

RESUMEN

BACKGROUND: About 98% of male affected with cystic fibrosis (CF [MIM 219700]) are infertile due to bilateral absence of vas deferens (CBAVD [MIM 277180]), which makes up 1-2 % of all cases with male infertility. A previous screening of the entire coding region of the cystic fibrosis transmembrane conductance regulator gene (CFTR [MIM 602421]) in CBAVD patients identified three novel mutations: P439S is located in the first nucleotide binding domain (NBD1) of CFTR, whereas P1290S and E1401K are located in NBD2. METHODS: We analysed the effects of these novel mutations on CFTR processing and chloride (Cl(-)) channel activity. RESULTS: Although maturation patterns were not affected, total amounts of mature P439S-CFTR and P1290S-CFTR were reduced. Confocal microscopy showed correct membrane localisation of E1401K-CFTR, whereas P439S-CFTR and P1290S-CFTR mutants were located mainly in the cytoplasm. Iodide influx assay and whole-cell patch clamp demonstrated significantly reduced cAMP-dependent anion conductances for all three mutants. CONCLUSION: Dysfunction of CFTR is caused by either defective CFTR trafficking (P439S and P1290S) or/and Cl- channel function (P1290S and E1401K). Thus reduced Cl- conductance caused by the three CFTR mutations affects normal development of vas deferens and leads to CBAVD, but the remaining function is sufficient to prevent other typical CF symptoms.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística/química , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Enfermedades de los Genitales Masculinos/congénito , Enfermedades de los Genitales Masculinos/genética , Mutación Missense/genética , Nucleótidos/metabolismo , Conducto Deferente/anomalías , Secuencia de Aminoácidos , Western Blotting , Línea Celular , Análisis Mutacional de ADN , Genotipo , Humanos , Activación del Canal Iónico , Masculino , Datos de Secuencia Molecular , Proteínas Mutantes/biosíntesis , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA