Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(2): 427-443, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37671615

RESUMEN

Mer tyrosine kinase (MerTK) is a receptor tyrosine kinase that mediates non-inflammatory, homeostatic phagocytosis of diverse types of cellular debris. Highly expressed on the surface of microglial cells, MerTK is of importance in brain development, homeostasis, plasticity and disease. Yet, involvement of this receptor in the clearance of protein aggregates that accumulate with ageing and in neurodegenerative diseases has yet to be defined. The current study explored the function of MerTK in the microglial uptake of alpha-synuclein fibrils which play a causative role in the pathobiology of synucleinopathies. Using human primary and induced pluripotent stem cell-derived microglia, the MerTK-dependence of alpha-synuclein fibril internalization was investigated in vitro. Relevance of this pathway in synucleinopathies was assessed through burden analysis of MERTK variants and analysis of MerTK expression in patient-derived cells and tissues. Pharmacological inhibition of MerTK and siRNA-mediated MERTK knockdown both caused a decreased rate of alpha-synuclein fibril internalization by human microglia. Consistent with the non-inflammatory nature of MerTK-mediated phagocytosis, alpha-synuclein fibril internalization was not observed to induce secretion of pro-inflammatory cytokines such as IL-6 or TNF, and downmodulated IL-1ß secretion from microglia. Burden analysis in two independent patient cohorts revealed a significant association between rare functionally deleterious MERTK variants and Parkinson's disease in one of the cohorts (P = 0.002). Despite a small upregulation in MERTK mRNA expression in nigral microglia from Parkinson's disease/Lewy body dementia patients compared to those from non-neurological control donors in a single-nuclei RNA-sequencing dataset (P = 5.08 × 10-21), no significant upregulation in MerTK protein expression was observed in human cortex and substantia nigra lysates from Lewy body dementia patients compared to controls. Taken together, our findings define a novel role for MerTK in mediating the uptake of alpha-synuclein fibrils by human microglia, with possible involvement in limiting alpha-synuclein spread in synucleinopathies such as Parkinson's disease. Upregulation of this pathway in synucleinopathies could have therapeutic values in enhancing alpha-synuclein fibril clearance in the brain.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Sinucleinopatías , Humanos , alfa-Sinucleína/metabolismo , Tirosina Quinasa c-Mer/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Microglía/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Tirosina Quinasas , Sinucleinopatías/metabolismo
2.
Acta Neuropathol ; 143(4): 453-469, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35141810

RESUMEN

The protein α-synuclein, a key player in Parkinson's disease (PD) and other synucleinopathies, exists in different physiological conformations: cytosolic unfolded aggregation-prone monomers and helical aggregation-resistant multimers. It has been shown that familial PD-associated missense mutations within the α-synuclein gene destabilize the conformer equilibrium of physiologic α-synuclein in favor of unfolded monomers. Here, we characterized the relative levels of unfolded and helical forms of cytosolic α-synuclein in post-mortem human brain tissue and showed that the equilibrium of α-synuclein conformations is destabilized in sporadic PD and DLB patients. This disturbed equilibrium is decreased in a brain region-specific manner in patient samples pointing toward a possible "prion-like" propagation of the underlying pathology and forms distinct disease-specific patterns in the two different synucleinopathies. We are also able to show that a destabilization of multimers mechanistically leads to increased levels of insoluble, pathological α-synuclein, while pharmacological stabilization of multimers leads to a "prion-like" aggregation resistance. Together, our findings suggest that these disease-specific patterns of α-synuclein multimer destabilization in sporadic PD and DLB are caused by both regional neuronal vulnerability and "prion-like" aggregation transmission enabled by the destabilization of local endogenous α-synuclein protein.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Priones , Sinucleinopatías , Encéfalo/patología , Humanos , Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/patología , Priones/metabolismo , alfa-Sinucleína/metabolismo
3.
J Biol Chem ; 294(25): 9799-9812, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31048377

RESUMEN

Parkinson's disease (PD) is one of the most common neurodegenerative disorders, and both genetic and histopathological evidence have implicated the ubiquitous presynaptic protein α-synuclein (αSyn) in its pathogenesis. Recent work has investigated how disrupting αSyn's interaction with membranes triggers trafficking defects, cellular stress, and apoptosis. Special interest has been devoted to a series of mutants exacerbating the effects of the E46K mutation (associated with autosomal dominant PD) through homologous Glu-to-Lys substitutions in αSyn's N-terminal region (i.e. E35K and E61K). Such E46K-like mutants have been shown to cause dopaminergic neuron loss and severe but L-DOPA-responsive motor defects in mouse overexpression models, presenting enormous translational potential for PD and other "synucleinopathies." In this work, using a variety of biophysical techniques, we characterize the molecular pathology of E46K-like αSyn mutants by studying their structure and membrane-binding and remodeling abilities. We find that, although a slight increase in the mutants' avidity for synaptic vesicle-like membranes can be detected, most of their deleterious effects are connected to their complete disruption of αSyn's curvature selectivity. Indiscriminate binding can shift αSyn's subcellular localization away from its physiological interactants at the synaptic bouton toward trafficking vesicles and organelles, as observed in E46K-like cellular and murine models, as well as in human pathology. In conclusion, our findings suggest that a loss of curvature selectivity, rather than increased membrane affinity, could be the critical dyshomeostasis in synucleinopathies.


Asunto(s)
Membrana Celular/patología , Ácido Glutámico/química , Lípidos/análisis , Lisina/química , Proteínas Mutantes/metabolismo , Mutación , alfa-Sinucleína/metabolismo , Membrana Celular/metabolismo , Ácido Glutámico/genética , Humanos , Lípidos/química , Lisina/genética , Proteínas Mutantes/genética , alfa-Sinucleína/genética
4.
Hum Mol Genet ; 26(18): 3466-3481, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28911198

RESUMEN

α-Synuclein (αS) forms round cytoplasmic inclusions in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Evidence suggests a physiological function of αS in vesicle trafficking and release. In contrast to earlier tenets, recent work indicates that αS normally exists in cells in a dynamic equilibrium between monomers and tetramers/multimers. We engineered αS mutants incapable of multimerization, leading to excess monomers at vesicle membranes. By EM, such mutants induced prominent vesicle clustering, leading to round cytoplasmic inclusions. Immunogold labeling revealed abundant αS intimately associated with vesicles of varied size. Fluorescence microscopy with marker proteins showed that the αS-associated vesicles were of diverse endocytic and secretory origin. An αS '3K' mutant (E35K + E46K + E61K) that amplifies the PD/DLB-causing E46K mutation induced αS-rich vesicle clusters resembling the vesicle-rich areas of Lewy bodies, supporting pathogenic relevance. Mechanistically, E46K can increase αS vesicle binding via membrane-induced amphipathic helix formation, and '3K' further enhances this effect. Another engineered αS variant added hydrophobicity to the hydrophobic half of αS helices, thereby stabilizing αS-membrane interactions. Importantly, substituting charged for uncharged residues within the hydrophobic half of the stabilized helix not only reversed the strong membrane interaction of the multimer-abolishing αS variant but also restored multimerization and prevented the aberrant vesicle interactions. Thus, reversible αS amphipathic helix formation and dynamic multimerization regulate a normal function of αS at vesicles, and abrogating multimers has pathogenic consequences.


Asunto(s)
Cuerpos de Inclusión/metabolismo , Mutación , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Secuencia Conservada , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Lewy/genética , Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente/métodos , Neuronas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Estructura Secundaria de Proteína
5.
Neurobiol Dis ; 111: 26-35, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29246723

RESUMEN

Missense mutations in the multi-domain kinase LRRK2 cause late onset familial Parkinson's disease. They most commonly with classic proteinopathy in the form of Lewy bodies and Lewy neurites comprised of insoluble α-synuclein, but in rare cases can also manifest tauopathy. The normal function of LRRK2 has remained elusive, as have the cellular consequences of its mutation. Data from LRRK2 null model organisms and LRRK2-inhibitor treated animals support a physiological role for LRRK2 in regulating lysosome function. Since idiopathic and LRRK2-linked PD are associated with the intraneuronal accumulation of protein aggregates, a series of critical questions emerge. First, how do pathogenic mutations that increase LRRK2 kinase activity affect lysosome biology in neurons? Second, are mutation-induced changes in lysosome function sufficient to alter the metabolism of α-synuclein? Lastly, are changes caused by pathogenic mutation sensitive to reversal with LRRK2 kinase inhibitors? Here, we report that mutation of LRRK2 induces modest but significant changes in lysosomal morphology and acidification, and decreased basal autophagic flux when compared to WT neurons. These changes were associated with an accumulation of detergent-insoluble α-synuclein and increased neuronal release of α-synuclein and were reversed by pharmacologic inhibition of LRRK2 kinase activity. These data demonstrate a critical and disease-relevant influence of native neuronal LRRK2 kinase activity on lysosome function and α-synuclein homeostasis. Furthermore, they also suggest that lysosome dysfunction, altered neuronal α-synuclein metabolism, and the insidious accumulation of aggregated protein over decades may contribute to pathogenesis in this late-onset form of familial PD.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lisosomas/metabolismo , Mutación , Neuronas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Autofagia , Células Cultivadas , Humanos , Concentración de Iones de Hidrógeno , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/antagonistas & inhibidores , Lisosomas/patología , Ratones Transgénicos , Neuronas/patología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo
6.
Proc Natl Acad Sci U S A ; 112(31): 9596-601, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26153422

RESUMEN

α-Synuclein (αS) is a highly abundant neuronal protein that aggregates into ß-sheet-rich inclusions in Parkinson's disease (PD). αS was long thought to occur as a natively unfolded monomer, but recent work suggests it also occurs normally in α-helix-rich tetramers and related multimers. To elucidate the fundamental relationship between αS multimers and monomers in living neurons, we performed systematic mutagenesis to abolish self-interactions and learn which structural determinants underlie native multimerization. Unexpectedly, tetramers/multimers still formed in cells expressing each of 14 sequential 10-residue deletions across the 140-residue polypeptide. We postulated compensatory effects among the six highly conserved and one to three additional αS repeat motifs (consensus: KTKEGV), consistent with αS and its homologs ß- and γ-synuclein all forming tetramers while sharing only the repeats. Upon inserting in-register missense mutations into six or more αS repeats, certain mutations abolished tetramer formation, shown by intact-cell cross-linking and independently by fluorescent-protein complementation. For example, altered repeat motifs KLKEGV, KTKKGV, KTKEIV, or KTKEGW did not support tetramerization, indicating the importance of charged or small residues. When we expressed numerous different in-register repeat mutants in human neural cells, all multimer-abolishing but no multimer-neutral mutants caused frank neurotoxicity akin to the proapoptotic protein Bax. The multimer-abolishing variants became enriched in buffer-insoluble cell fractions and formed round cytoplasmic inclusions in primary cortical neurons. We conclude that the αS repeat motifs mediate physiological tetramerization, and perturbing them causes PD-like neurotoxicity. Moreover, the mutants we describe are valuable tools for studying normal and pathological properties of αS and screening for tetramer-stabilizing therapeutics.


Asunto(s)
Mutación/genética , Neuronas/patología , Multimerización de Proteína , Secuencias Repetitivas de Aminoácido , alfa-Sinucleína/química , alfa-Sinucleína/toxicidad , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Muerte Celular/efectos de los fármacos , Secuencia Conservada , Reactivos de Enlaces Cruzados/farmacología , Humanos , Cuerpos de Inclusión/efectos de los fármacos , Cuerpos de Inclusión/metabolismo , Microscopía Fluorescente , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Sprague-Dawley , Eliminación de Secuencia , Relación Estructura-Actividad , alfa-Sinucleína/genética
7.
Nature ; 477(7362): 107-10, 2011 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-21841800

RESUMEN

Parkinson's disease is the second most common neurodegenerative disorder. Growing evidence indicates a causative role of misfolded forms of the protein α-synuclein in the pathogenesis of Parkinson's disease. Intraneuronal aggregates of α-synuclein occur in Lewy bodies and Lewy neurites, the cytopathological hallmarks of Parkinson's disease and related disorders called synucleinopathies. α-Synuclein has long been defined as a 'natively unfolded' monomer of about 14 kDa (ref. 6) that is believed to acquire α-helical secondary structure only upon binding to lipid vesicles. This concept derives from the widespread use of recombinant bacterial expression protocols for in vitro studies, and of overexpression, sample heating and/or denaturing gels for cell culture and tissue studies. In contrast, we report that endogenous α-synuclein isolated and analysed under non-denaturing conditions from neuronal and non-neuronal cell lines, brain tissue and living human cells occurs in large part as a folded tetramer of about 58 kDa. Several methods, including analytical ultracentrifugation, scanning transmission electron microscopy and in vitro cell crosslinking confirmed the occurrence of the tetramer. Native, cell-derived α-synuclein showed α-helical structure without lipid addition and had much greater lipid-binding capacity than the recombinant α-synuclein studied heretofore. Whereas recombinantly expressed monomers readily aggregated into amyloid-like fibrils in vitro, native human tetramers underwent little or no amyloid-like aggregation. On the basis of these findings, we propose that destabilization of the helically folded tetramer precedes α-synuclein misfolding and aggregation in Parkinson's disease and other human synucleinopathies, and that small molecules that stabilize the physiological tetramer could reduce α-synuclein pathogenicity.


Asunto(s)
alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Animales , Western Blotting , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Eritrocitos/química , Escherichia coli/genética , Células HEK293 , Células HeLa , Humanos , Metabolismo de los Lípidos , Ratones , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Factores de Tiempo , alfa-Sinucleína/genética
8.
Biochemistry ; 54(2): 279-92, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25490121

RESUMEN

Despite two decades of research, the structure-function relationships of endogenous, physiological forms of α-synuclein (αSyn) are not well understood. Most in vitro studies of this Parkinson's disease-related protein have focused on recombinant αSyn that is unfolded and monomeric, assuming that this represents its state in the normal human brain. Recently, we have provided evidence that αSyn exists in considerable part in neurons, erythrocytes, and other cells as a metastable multimer that principally sizes as a tetramer. In contrast to recombinant αSyn, physiological tetramers purified from human erythrocytes have substantial α-helical content and resist pathological aggregation into ß-sheet rich fibers. Here, we report the first method to fully purify soluble αSyn from the most relevant source, human brain. We describe protocols that purify αSyn to homogeneity from nondiseased human cortex using ammonium sulfate precipitation, gel filtration, and ion exchange, hydrophobic interaction, and affinity chromatographies. Cross-linking of the starting material and the partially purified chromatographic fractions revealed abundant αSyn multimers, including apparent tetramers, but these were destabilized in large part to monomers during the final purification step. The method also fully purified the homologue ß-synuclein, with a similar outcome. Circular dichroism spectroscopy showed that purified, brain-derived αSyn can display more helical content than the recombinant protein, but this result varied. Collectively, our data suggest that purifying αSyn to homogeneity destabilizes native, α-helix-rich multimers that exist in intact and partially purified brain samples. This finding suggests existence of a stabilizing cofactor (e.g., a small lipid) present inside neurons that is lost during final purification.


Asunto(s)
Química Encefálica , Estabilidad Proteica , alfa-Sinucleína/aislamiento & purificación , Precipitación Química , Cromatografía en Gel , Cromatografía por Intercambio Iónico , Dicroismo Circular , Humanos , Espectrometría de Masas , Multimerización de Proteína , Estructura Secundaria de Proteína , alfa-Sinucleína/química , Sinucleína beta/aislamiento & purificación
9.
J Biol Chem ; 289(31): 21490-507, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24942732

RESUMEN

α-Synuclein (αSyn) aggregation and mitochondrial dysfunction both contribute to the pathogenesis of Parkinson disease (PD). Although recent studies have suggested that mitochondrial association of αSyn may disrupt mitochondrial function, it is unclear what aggregation state of αSyn is most damaging to mitochondria and what conditions promote or inhibit the effect of toxic αSyn species. Because the neuronal populations most vulnerable in PD are characterized by large cytosolic Ca(2+) oscillations that burden mitochondria, we examined mitochondrial Ca(2+) stress in an in vitro system comprising isolated mitochondria and purified recombinant human αSyn in various aggregation states. Using fluorimetry to simultaneously measure four mitochondrial parameters, we observed that soluble, prefibrillar αSyn oligomers, but not monomeric or fibrillar αSyn, decreased the retention time of exogenously added Ca(2+), promoted Ca(2+)-induced mitochondrial swelling and depolarization, and accelerated cytochrome c release. Inhibition of the permeability transition pore rescued these αSyn-induced changes in mitochondrial parameters. Interestingly, the mitotoxic effects of αSyn were specifically dependent upon both electron flow through complex I and mitochondrial uptake of exogenous Ca(2+). Our results suggest that soluble prefibrillar αSyn oligomers recapitulate several mitochondrial phenotypes previously observed in animal and cell models of PD: complex I dysfunction, altered membrane potential, disrupted Ca(2+) homeostasis, and enhanced cytochrome c release. These data reveal how the association of oligomeric αSyn with mitochondria can be detrimental to the function of cells with high Ca(2+)-handling requirements.


Asunto(s)
Biopolímeros/fisiología , Calcio/fisiología , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/fisiología , alfa-Sinucleína/fisiología , Animales , Benzotiazoles , Biopolímeros/química , Humanos , Potencial de la Membrana Mitocondrial , Ratones , Tiazoles/metabolismo , alfa-Sinucleína/química
10.
J Biol Chem ; 288(9): 6371-85, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23319586

RESUMEN

Aggregation of α-synuclein (αSyn) in neurons produces the hallmark cytopathology of Parkinson disease and related synucleinopathies. Since its discovery, αSyn has been thought to exist normally in cells as an unfolded monomer. We recently reported that αSyn can instead exist in cells as a helically folded tetramer that resists aggregation and binds lipid vesicles more avidly than unfolded recombinant monomers (Bartels, T., Choi, J. G., and Selkoe, D. J. (2011) Nature 477, 107-110). However, a subsequent study again concluded that cellular αSyn is an unfolded monomer (Fauvet, B., Mbefo, M. K., Fares, M. B., Desobry, C., Michael, S., Ardah, M. T., Tsika, E., Coune, P., Prudent, M., Lion, N., Eliezer, D., Moore, D. J., Schneider, B., Aebischer, P., El-Agnaf, O. M., Masliah, E., and Lashuel, H. A. (2012) J. Biol. Chem. 287, 15345-15364). Here we describe a simple in vivo cross-linking method that reveals a major ~60-kDa form of endogenous αSyn (monomer, 14.5 kDa) in intact cells and smaller amounts of ~80- and ~100-kDa forms with the same isoelectric point as the 60-kDa species. Controls indicate that the apparent 60-kDa tetramer exists normally and does not arise from pathological aggregation. The pattern of a major 60-kDa and minor 80- and 100-kDa species plus variable amounts of free monomers occurs endogenously in primary neurons and erythroid cells as well as neuroblastoma cells overexpressing αSyn. A similar pattern occurs for the homologue, ß-synuclein, which does not undergo pathogenic aggregation. Cell lysis destabilizes the apparent 60-kDa tetramer, leaving mostly free monomers and some 80-kDa oligomer. However, lysis at high protein concentrations allows partial recovery of the 60-kDa tetramer. Together with our prior findings, these data suggest that endogenous αSyn exists principally as a 60-kDa tetramer in living cells but is lysis-sensitive, making the study of natural αSyn challenging outside of intact cells.


Asunto(s)
Células Eritroides/metabolismo , Neuronas/metabolismo , Multimerización de Proteína/fisiología , alfa-Sinucleína/metabolismo , Sinucleína beta/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Noqueados , Proteínas de Neoplasias/metabolismo , Neuroblastoma/metabolismo , alfa-Sinucleína/genética , Sinucleína beta/genética
11.
EMBO J ; 29(20): 3571-89, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20842103

RESUMEN

Aggregation of α-synuclein (αS) is involved in the pathogenesis of Parkinson's disease (PD) and a variety of related neurodegenerative disorders. The physiological function of αS is largely unknown. We demonstrate with in vitro vesicle fusion experiments that αS has an inhibitory function on membrane fusion. Upon increased expression in cultured cells and in Caenorhabditis elegans, αS binds to mitochondria and leads to mitochondrial fragmentation. In C. elegans age-dependent fragmentation of mitochondria is enhanced and shifted to an earlier time point upon expression of exogenous αS. In contrast, siRNA-mediated downregulation of αS results in elongated mitochondria in cell culture. αS can act independently of mitochondrial fusion and fission proteins in shifting the dynamic morphologic equilibrium of mitochondria towards reduced fusion. Upon cellular fusion, αS prevents fusion of differently labelled mitochondrial populations. Thus, αS inhibits fusion due to its unique membrane interaction. Finally, mitochondrial fragmentation induced by expression of αS is rescued by coexpression of PINK1, parkin or DJ-1 but not the PD-associated mutations PINK1 G309D and parkin Δ1-79 or by DJ-1 C106A.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fusión de Membrana/fisiología , Mitocondrias/metabolismo , Proteínas Oncogénicas/metabolismo , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular , Humanos , Inmunohistoquímica , Péptidos y Proteínas de Señalización Intracelular/genética , Mitocondrias/ultraestructura , Proteínas Oncogénicas/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteína Desglicasa DJ-1 , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética , alfa-Sinucleína/genética
12.
Neurodegener Dis ; 13(2-3): 114-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24192542

RESUMEN

Misfolding and pathogenic aggregation of α-synuclein (αSyn) is a hallmark of familial and sporadic Parkinson's disease, but the physiological state of the protein in cells remains unsettled. We have further examined our hypothesis that endogenous αSyn can occur in normal cells as a metastable, helically folded tetramer, not solely as the unfolded monomer long thought to be its native form. At this meeting, we reviewed our recent approaches for trapping αSyn in intact cells via in vivo crosslinking, a 5-step purification of αSyn from normal human brain, and the generation of new monoclonal antibodies to αSyn that enable general and oligomer-selective ELISAs. Crosslinking in intact living cells confirmed that αSyn occurs in the cytosol of neurons and non-neural cells in substantial part as metastable tetramers and related oligomers, plus varying amounts of free monomers. The non-pathogenic homolog, ß-synuclein, forms closely similar oligomeric assemblies, suggesting that the oligomers we observe for αSyn are also physiological. In contrast to other normal oligomeric proteins (e.g., DJ-1), αSyn tetramers dissociate rapidly to monomers upon conventional cell lysis but are retained partially as tetramers if cells are lysed at high protein concentrations ('molecular crowding'). Thus, αSyn exists natively as helical tetramers that are in dynamic equilibrium with unfolded monomers. The tetramers appear relatively resistant to aggregation, in contrast to monomers, which may give rise to fibrillar inclusions.


Asunto(s)
alfa-Sinucleína/química , alfa-Sinucleína/aislamiento & purificación , Animales , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
13.
EMBO Mol Med ; 16(7): 1657-1674, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38839930

RESUMEN

Synucleinopathies such as Parkinson's disease (PD) are defined by the accumulation and aggregation of the α-synuclein protein in neurons, glia and other tissues. We have previously shown that destabilization of α-synuclein tetramers is associated with familial PD due to SNCA mutations and demonstrated brain-region specific alterations of α-synuclein multimers in sporadic PD patients following the classical Braak spreading theory. In this study, we assessed relative levels of disordered and higher-ordered multimeric forms of cytosolic α-synuclein in blood from familial PD with G51D mutations and sporadic PD patients. We used an adapted in vitro-cross-linking protocol for human EDTA-whole blood. The relative levels of higher-ordered α-synuclein tetramers were diminished in blood from familial PD and sporadic PD patients compared to controls. Interestingly, the relative amount of α-synuclein tetramers was already decreased in asymptomatic G51D carriers, supporting the hypothesis that α-synuclein multimer destabilization precedes the development of clinical PD. Our data, therefore suggest that measuring α-synuclein tetramers in blood may have potential as a facile biomarker assay for early detection and quantitative tracking of PD progression.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , alfa-Sinucleína/sangre , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Anciano , Masculino , Femenino , Persona de Mediana Edad , Multimerización de Proteína , Agregado de Proteínas
14.
Artículo en Inglés | MEDLINE | ID: mdl-37330108

RESUMEN

Fibrillary aggregated α-synuclein represents the neurologic hallmark of Parkinson's disease and is considered to play a causative role in the disease. Although the causes leading to α-synuclein aggregation are not clear, the GM1 ganglioside interaction is recognized to prevent this process. How GM1 exerts these functions is not completely clear, although a primary role of its soluble oligosaccharide (GM1-OS) is emerging. Indeed, we recently identified GM1-OS as the bioactive moiety responsible for GM1 neurotrophic and neuroprotective properties, specifically reverting the parkinsonian phenotype both in in vitro and in vivo models. Here, we report on GM1-OS efficacy against the α-synuclein aggregation and toxicity in vitro. By amyloid seeding aggregation assay and NMR spectroscopy, we demonstrated that GM1-OS was able to prevent both the spontaneous and the prion-like α-synuclein aggregation. Additionally, circular dichroism spectroscopy of recombinant monomeric α-synuclein showed that GM1-OS did not induce any change in α-synuclein secondary structure. Importantly, GM1-OS significantly increased neuronal survival and preserved neurite networks of dopaminergic neurons affected by α-synuclein oligomers, together with a reduction of microglia activation. These data further demonstrate that the ganglioside GM1 acts through its oligosaccharide also in preventing the α-synuclein pathogenic aggregation in Parkinson's disease, opening a perspective window for GM1-OS as drug candidate.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/genética , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/patología , Gangliósido G(M1)/farmacología , Gangliósido G(M1)/química , Oligosacáridos/farmacología
15.
NPJ Parkinsons Dis ; 9(1): 4, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36646701

RESUMEN

In Parkinson's disease and other synucleinopathies, the elevation of α-synuclein phosphorylated at Serine129 (pS129) is a widely cited marker of pathology. However, the physiological role for pS129 has remained undefined. Here we use multiple approaches to show for the first time that pS129 functions as a physiological regulator of neuronal activity. Neuronal activity triggers a sustained increase of pS129 in cultured neurons (200% within 4 h). In accord, brain pS129 is elevated in environmentally enriched mice exhibiting enhanced long-term potentiation. Activity-dependent α-synuclein phosphorylation is S129-specific, reversible, confers no cytotoxicity, and accumulates at synapsin-containing presynaptic boutons. Mechanistically, our findings are consistent with a model in which neuronal stimulation enhances Plk2 kinase activity via a calcium/calcineurin pathway to counteract PP2A phosphatase activity for efficient phosphorylation of membrane-bound α-synuclein. Patch clamping of rat SNCA-/- neurons expressing exogenous wild-type or phospho-incompetent (S129A) α-synuclein suggests that pS129 fine-tunes the balance between excitatory and inhibitory neuronal currents. Consistently, our novel S129A knock-in (S129AKI) mice exhibit impaired hippocampal plasticity. The discovery of a key physiological function for pS129 has implications for understanding the role of α-synuclein in neurotransmission and adds nuance to the interpretation of pS129 as a synucleinopathy biomarker.

17.
Front Neurosci ; 15: 639414, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33613189

RESUMEN

α-Synuclein is a presynaptic protein that regulates synaptic vesicle trafficking under physiological conditions. However, in several neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, α-synuclein accumulates throughout the neuron, including at synapses, leading to altered synaptic function, neurotoxicity, and motor, cognitive, and autonomic dysfunction. Neurons typically contain both monomeric and multimeric forms of α-synuclein, and it is generally accepted that disrupting the balance between them promotes aggregation and neurotoxicity. However, it remains unclear how distinct molecular species of α-synuclein affect synapses where α-synuclein is normally expressed. Using the lamprey reticulospinal synapse model, we previously showed that acute introduction of excess recombinant monomeric or dimeric α-synuclein impaired distinct stages of clathrin-mediated synaptic vesicle endocytosis, leading to a loss of synaptic vesicles. Here, we expand this knowledge by investigating the effects of native, physiological α-synuclein isolated from the brain of a neuropathologically normal human subject, which comprised predominantly helically folded multimeric α-synuclein with a minor component of monomeric α-synuclein. After acute introduction of excess brain-derived human α-synuclein, there was a moderate reduction in the synaptic vesicle cluster and an increase in the number of large, atypical vesicles called "cisternae." In addition, brain-derived α-synuclein increased synaptic vesicle and cisternae sizes and induced atypical fusion/fission events at the active zone. In contrast to monomeric or dimeric α-synuclein, the brain-derived multimeric α-synuclein did not appear to alter clathrin-mediated synaptic vesicle endocytosis. Taken together, these data suggest that excess brain-derived human α-synuclein impairs intracellular vesicle trafficking and further corroborate the idea that different molecular species of α-synuclein produce distinct trafficking defects at synapses. These findings provide insights into the mechanisms by which excess α-synuclein contributes to synaptic deficits and disease phenotypes.

18.
Biophys J ; 99(7): 2116-24, 2010 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-20923645

RESUMEN

Alpha-synuclein (αS) is a 140-amino-acid protein that is involved in a number of neurodegenerative diseases. In Parkinson's disease, the protein is typically encountered in intracellular, high-molecular-weight aggregates. Although αS is abundant in the presynaptic terminals of the central nervous system, its physiological function is still unknown. There is strong evidence for the membrane affinity of the protein. One hypothesis is that lipid-induced binding and helix folding may modulate the fusion of synaptic vesicles with the presynaptic membrane and the ensuing transmitter release. Here we show that membrane recognition of the N-terminus is essential for the cooperative formation of helical domains in the protein. We used circular dichroism spectroscopy and isothermal titration calorimetry to investigate synthetic peptide fragments from different domains of the full-length αS protein. Site-specific truncation and partial cleavage of the full-length protein were employed to further characterize the structural motifs responsible for helix formation and lipid-protein interaction. Unilamellar vesicles of varying net charge and lipid compositions undergoing lateral phase separation or chain melting phase transitions in the vicinity of physiological temperatures served as model membranes. The results suggest that the membrane-induced helical folding of the first 25 residues may be driven simultaneously by electrostatic attraction and by a change in lipid ordering. Our findings highlight the significance of the αS N-terminus for folding nucleation, and provide a framework for elucidating the role of lipid-induced conformational transitions of the protein within its intracellular milieu.


Asunto(s)
Membrana Celular/metabolismo , Pliegue de Proteína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Secuencia de Aminoácidos , Calorimetría , Dicroismo Circular , Humanos , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Temperatura , Liposomas Unilamelares/metabolismo
19.
Science ; 370(6512): 66-69, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-33004513

RESUMEN

Dementia is a rapidly rising global health crisis that silently disables families and ends lives and livelihoods around the world. To date, however, no early biomarkers or effective therapies exist. It is now clear that brain microglia are more than mere bystanders or amyloid phagocytes; they can act as governors of neuronal function and homeostasis in the adult brain. Here, we highlight the fundamental role of microglia as tissue-resident macrophages in neuronal health. Then, we suggest how chronic impairment in microglia-neuron cross-talk may secure the permanence of the failure of synaptic and neuronal function and health in Alzheimer's and Parkinson's diseases. Understanding how to assess and modulate microglia-neuron interactions critical for brain health will be key to developing effective therapies for dementia.


Asunto(s)
Enfermedad de Alzheimer/patología , Amiloide/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Enfermedad de Parkinson/patología , Sinapsis/patología , Animales , Comunicación Celular , Humanos , Ratones , Neuronas/metabolismo , Sinaptosomas/patología , alfa-Sinucleína/metabolismo
20.
Brain Commun ; 2(1): fcaa010, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32280944

RESUMEN

Since researchers identified α-synuclein as the principal component of Lewy bodies and Lewy neurites, studies have suggested that it plays a causative role in the pathogenesis of dementia with Lewy bodies and other 'synucleinopathies'. While α-synuclein dyshomeostasis likely contributes to the neurodegeneration associated with the synucleinopathies, few direct biochemical analyses of α-synuclein from diseased human brain tissue currently exist. In this study, we analysed sequential protein extracts from a substantial number of patients with neuropathological diagnoses of dementia with Lewy bodies and corresponding controls, detecting a shift of cytosolic and membrane-bound physiological α-synuclein to highly aggregated forms. We then fractionated aqueous extracts (cytosol) from cerebral cortex using non-denaturing methods to search for soluble, disease-associated high molecular weight species potentially associated with toxicity. We applied these fractions and corresponding insoluble fractions containing Lewy-type aggregates to several reporter assays to determine their bioactivity and cytotoxicity. Ultimately, high molecular weight cytosolic fractions enhances phospholipid membrane permeability, while insoluble, Lewy-associated fractions induced morphological changes in the neurites of human stem cell-derived neurons. While the concentrations of soluble, high molecular weight α-synuclein were only slightly elevated in brains of dementia with Lewy bodies patients compared to healthy, age-matched controls, these observations suggest that a small subset of soluble α-synuclein aggregates in the brain may drive early pathogenic effects, while Lewy body-associated α-synuclein can drive neurotoxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA