RESUMEN
Ring-opening metathesis polymerization is a robust method to synthesize a variety of polymers by using ring-strained molecules as monomers, e.g., norbornenes. However, the synthesis of monomers with multiple functional groups remains a challenge, albeit peptide functional norbornenes have previously been used. Here, the Passerini three component reaction is exploited to synthesize norbornenes with two variable functional groups varying in bulkiness and distance from the polymerizable alkene. The results indicate that the functional groups do not affect the kinetics of the polymerization, whereas the length of the linker has a minor effect. Furthermore, a diblock-type copolymer is synthesized in a one-pot fashion, also indicating good control of the polymerization process. The thermal properties of all polymers are evaluated, highlighting the effect of monomer composition. This synthetic approach can be transferred to a variety of compounds, thus promising highly diverse polymers with complex compositions and architectures.
Asunto(s)
Norbornanos , Polímeros , Alquenos , Péptidos , PolimerizacionRESUMEN
A Passerini three-component polymerization was performed for the synthesis of amphiphilic star-shaped block copolymers with hydrophobic cores and hydrophilic coronae. The degree of polymerization of the hydrophobic core was varied from 5 to 10 repeating units, and the side chain ends were conjugated by performing a Passerini-3CR with PEG-isocyanide and PEG-aldehyde (950 g/mol). The resulting amphiphilic star-shaped block copolymers contained thioether groups, which could be oxidized to sulfones in order to further tune the polarity of the polymer chains. The ability of the amphiphilic copolymers to act as unimolecular micellar encapsulants was tested with the water-insoluble dye Orange II, the water-soluble dye Para Red and the macrolide antibiotic azithromycin. The results showed that the new copolymers were able to retain drug cargo at pH levels corresponding to circulating blood and selectively release therapeutically effective doses of antibiotic as measured by bacterial cell kill. The polymers were also well-tolerated by differentiated THP-1 macrophages in the absence of encapsulated drugs.
Asunto(s)
Materiales Biocompatibles/síntesis química , Micelas , Nanopartículas/química , Antibacterianos/administración & dosificación , Antibacterianos/química , Azitromicina/administración & dosificación , Azitromicina/química , Línea Celular , Liberación de Fármacos , Humanos , Monocitos/efectos de los fármacos , Nanopartículas/efectos adversos , Polietilenglicoles/química , PolimerizacionRESUMEN
Various poly(sodium acrylate) hydrogels with different architectures, such as single networks, interpenetrating double networks and surface crosslinked hydrogels, are synthesized with a systematic change in their degree of crosslinking. The influence of these 3D structures on the absorbency of aqueous NaCl solutions is investigated. The local polymer mobility in water is probed in the form of transverse (T2) 1H-relaxation at a low field, which allowed confirming the structural aspects of the studied network topologies. Salt partitioning between the gel and the surrounding solution phase in NaCl solutions with an initial salt concentration of c0 = 0.017-0.60 mol L-1 (â1-35 g L-1) is investigated. The data are compared with an idealized mean-field Donnan model, which fit the experimental findings only under the assumption of a drastically reduced effective charge density of feff ≈ 25 mol% independent of the hydrogel used. The unequal salt distribution allows desalination of salt water by applying an external pressure to a swollen hydrogel to recover its water which has a lower salinity. The specific energy needed to desalinate 1 m3 was estimated to be 6-18 kW h m-3. This value decreases with a lower degree of swelling independent of the network topology. Besides the experiments, simulations based on a Poisson-Boltzmann mean-field model and MD simulations are performed to determine the degree of swelling and salt partitioning as a function of c0 for different hydrogels. Both simulations describe qualitatively the experimental data, where deviations can be ascribed to model simplifications and the imperfect structure of the hydrogels synthesized via free radical polymerization.