Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(28): 16424-16430, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32586956

RESUMEN

Extreme environments test the limits of life; yet, some organisms thrive in harsh conditions. Extremophile lineages inspire questions about how organisms can tolerate physiochemical stressors and whether the repeated colonization of extreme environments is facilitated by predictable and repeatable evolutionary innovations. We identified the mechanistic basis underlying convergent evolution of tolerance to hydrogen sulfide (H2S)-a toxicant that impairs mitochondrial function-across evolutionarily independent lineages of a fish (Poecilia mexicana, Poeciliidae) from H2S-rich springs. Using comparative biochemical and physiological analyses, we found that mitochondrial function is maintained in the presence of H2S in sulfide spring P. mexicana but not ancestral lineages from nonsulfidic habitats due to convergent adaptations in the primary toxicity target and a major detoxification enzyme. Genome-wide local ancestry analyses indicated that convergent evolution of increased H2S tolerance in different populations is likely caused by a combination of selection on standing genetic variation and de novo mutations. On a macroevolutionary scale, H2S tolerance in 10 independent lineages of sulfide spring fishes across multiple genera of Poeciliidae is correlated with the convergent modification and expression changes in genes associated with H2S toxicity and detoxification. Our results demonstrate that the modification of highly conserved physiological pathways associated with essential mitochondrial processes mediates tolerance to physiochemical stress. In addition, the same pathways, genes, and-in some instances-codons are implicated in H2S adaptation in lineages that span 40 million years of evolution.


Asunto(s)
Evolución Molecular , Mitocondrias/metabolismo , Poecilia/fisiología , Adaptación Fisiológica , Animales , Ecosistema , Ambientes Extremos , Genoma , Sulfuro de Hidrógeno/metabolismo , Mitocondrias/genética , Filogenia , Poecilia/genética
2.
Artículo en Inglés | MEDLINE | ID: mdl-35760269

RESUMEN

Digestive morphology and physiology differ across animal species, with many comparative studies uncovering relationships between animal ecology or diet, and the morphology and physiology of the gastrointestinal tract. However, many of these studies compare wild-caught animals feeding on uncontrolled diets and compare broadly related taxa. Thus, few studies have disentangled the phenotypic consequences of genetics from those potentially caused by the environment, especially across closely related species that occupy similar ecological niches. Here, we examined differences in digestive morphology and physiology of five closely related species of Peromyscus mice that were captive bred under identical environmental conditions and identical diets for multiple generations. Using phylogenetic generalized least squares (PGLS) of species means to control for body size, we identified a phylogenetic signal in the mass of the foregut and length of the small intestine across species. As proportions of total gut mass, we identified phylogenetic signals in relative foregut and small intestine masses, indicating that the sizes of these structures are more similar among closely related species. Finally, we detected differences in activities of the protease aminopeptidase-N enzyme across species. Overall, we demonstrate fine-scale differences in digestive morphology and physiology among closely related species. Our results suggest that Peromyscus could provide a system for future studies to explore the interplay between natural history, morphology, and physiology (e.g. ecomorphology and ecophysiology), and to investigate the genetic architecture that underlies gut anatomy.


Asunto(s)
Dieta , Peromyscus , Animales , Ambiente Controlado , Tracto Gastrointestinal/fisiología , Filogenia
3.
Artículo en Inglés | MEDLINE | ID: mdl-38341948

RESUMEN

Convergent evolution is a widespread phenomenon. While there are many examples of convergent evolution at the phenotypic scale, convergence at the molecular level has been more difficult to identify. A classic example of convergent evolution across scales is that of the digestive lysozyme found in ruminants and Colobine monkeys. These herbivorous species rely on foregut fermentation, which has evolved to function more optimally under acidic conditions. Here, we explored if rodents with similar dietary strategies and digestive morphologies have convergently evolved a lysozyme with digestive functions. At the phenotypic level, we find that rodents with bilocular stomach morphologies exhibited a lysozyme that maintained higher relative activities at low pH values, similar to the lysozymes of ruminants and Colobine monkeys. Additionally, the lysozyme of Peromyscus leucopus shared a similar predicted protonation state as that observed in previously identified digestive lysozymes. However, we found limited evidence of positive selection acting on the lysozyme gene in foregut-fermenting species and did not identify patterns of convergent molecular evolution in this gene. This study emphasizes that phenotypic convergence need not be the result of convergent genetic modifications, and we encourage further exploration into the mechanisms regulating convergence across biological scales.


Asunto(s)
Muramidasa , Roedores , Animales , Muramidasa/genética , Muramidasa/química , Estómago , Primates , Rumiantes/genética , Evolución Molecular , Filogenia , Evolución Biológica
4.
Integr Comp Biol ; 62(2): 237-251, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35587374

RESUMEN

The gut microbial communities of mammals provide numerous benefits to their hosts. However, given the recent development of the microbiome field, we still lack a thorough understanding of the variety of ecological and evolutionary factors that structure these communities across species. Metabarcoding is a powerful technique that allows for multiple microbial ecology questions to be investigated simultaneously. Here, we employed DNA metabarcoding techniques, predictive metagenomics, and culture-dependent techniques to inventory the gut microbial communities of several species of rodent collected from the same environment that employ different natural feeding strategies [granivorous pocket mice (Chaetodipus penicillatus); granivorous kangaroo rats (Dipodomys merriami); herbivorous woodrats (Neotoma albigula); omnivorous cactus mice (Peromyscus eremicus); and insectivorous grasshopper mice (Onychomys torridus)]. Of particular interest were shifts in gut microbial communities in rodent species with herbivorous and insectivorous diets, given the high amounts of indigestible fibers and chitinous exoskeleton in these diets, respectively. We found that herbivorous woodrats harbored the greatest microbial diversity. Granivorous pocket mice and kangaroo rats had the highest abundances of the genus Ruminococcus and highest predicted abundances of genes related to the digestion of fiber, representing potential adaptations in these species to the fiber content of seeds and the limitations to digestion given their small body size. Insectivorous grasshopper mice exhibited the greatest inter-individual variation in the membership of their microbiomes, and also exhibited the highest predicted abundances of chitin-degrading genes. Culture-based approaches identified 178 microbial isolates (primarily Bacillus and Enterococcus), with some capable of degrading cellulose and chitin. We observed several instances of strain-level diversity in these metabolic capabilities across isolates, somewhat highlighting the limitations and hidden diversity underlying DNA metabarcoding techniques. However, these methods offer power in allowing the investigation of several questions concurrently, thus enhancing our understanding of gut microbial ecology.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Quitina , Dipodomys , Herbivoria , Peromyscus , Roedores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA