Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell ; 73(5): 1001-1014.e8, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30527540

RESUMEN

In Parkinson's disease (PD), α-synuclein (αS) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in αS or lipid/fatty acid homeostasis affect each other. Lipidomic profiling of human αS-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of αS dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased αS yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in αS-overexpressing rat neurons. In a C. elegans model, SCD knockout prevented αS-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on αS homeostasis: in human neural cells, excess OA caused αS inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for αS-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.


Asunto(s)
Antiparkinsonianos/farmacología , Descubrimiento de Drogas/métodos , Inhibidores Enzimáticos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolómica/métodos , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Estearoil-CoA Desaturasa/antagonistas & inhibidores , alfa-Sinucleína/toxicidad , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Línea Celular , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Diglicéridos/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/enzimología , Neuronas Dopaminérgicas/patología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/patología , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/enzimología , Ratones Endogámicos C57BL , Ratones Transgénicos , Terapia Molecular Dirigida , Degeneración Nerviosa , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/enzimología , Células-Madre Neurales/patología , Neuronas/enzimología , Neuronas/patología , Ácido Oléico/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Ratas Sprague-Dawley , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Estearoil-CoA Desaturasa/metabolismo , Triglicéridos/metabolismo , alfa-Sinucleína/genética
2.
Proc Natl Acad Sci U S A ; 114(52): E11313-E11322, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29229832

RESUMEN

Calcineurin is an essential Ca2+-dependent phosphatase. Increased calcineurin activity is associated with α-synuclein (α-syn) toxicity, a protein implicated in Parkinson's Disease (PD) and other neurodegenerative diseases. Calcineurin can be inhibited with Tacrolimus through the recruitment and inhibition of the 12-kDa cis-trans proline isomerase FK506-binding protein (FKBP12). Whether calcineurin/FKBP12 represents a native physiologically relevant assembly that occurs in the absence of pharmacological perturbation has remained elusive. We leveraged α-syn as a model to interrogate whether FKBP12 plays a role in regulating calcineurin activity in the absence of Tacrolimus. We show that FKBP12 profoundly affects the calcineurin-dependent phosphoproteome, promoting the dephosphorylation of a subset of proteins that contributes to α-syn toxicity. Using a rat model of PD, partial elimination of the functional interaction between FKBP12 and calcineurin, with low doses of the Food and Drug Administration (FDA)-approved compound Tacrolimus, blocks calcineurin's activity toward those proteins and protects against the toxic hallmarks of α-syn pathology. Thus, FKBP12 can endogenously regulate calcineurin activity with therapeutic implications for the treatment of PD.


Asunto(s)
Calcineurina/metabolismo , Enfermedad de Parkinson/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteína 1A de Unión a Tacrolimus/metabolismo , alfa-Sinucleína/metabolismo , Animales , Calcineurina/genética , Modelos Animales de Enfermedad , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Fosfoproteínas/genética , Proteoma/genética , Ratas , Ratas Sprague-Dawley , Tacrolimus/farmacología , Proteína 1A de Unión a Tacrolimus/genética , alfa-Sinucleína/genética
3.
Proc Natl Acad Sci U S A ; 111(34): E3544-52, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25122673

RESUMEN

Calcineurin (CN) is a highly conserved Ca(2+)-calmodulin (CaM)-dependent phosphatase that senses Ca(2+) concentrations and transduces that information into cellular responses. Ca(2+) homeostasis is disrupted by α-synuclein (α-syn), a small lipid binding protein whose misfolding and accumulation is a pathological hallmark of several neurodegenerative diseases. We report that α-syn, from yeast to neurons, leads to sustained highly elevated levels of cytoplasmic Ca(2+), thereby activating a CaM-CN cascade that engages substrates that result in toxicity. Surprisingly, complete inhibition of CN also results in toxicity. Limiting the availability of CaM shifts CN's spectrum of substrates toward protective pathways. Modulating CN or CN's substrates with highly selective genetic and pharmacological tools (FK506) does the same. FK506 crosses the blood brain barrier, is well tolerated in humans, and is active in neurons and glia. Thus, a tunable response to CN, which has been conserved for a billion years, can be targeted to rebalance the phosphatase's activities from toxic toward beneficial substrates. These findings have immediate therapeutic implications for synucleinopathies.


Asunto(s)
Calcineurina/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/toxicidad , Animales , Calcineurina/genética , Inhibidores de la Calcineurina , Señalización del Calcio , Calmodulina/metabolismo , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Ratones , Ratones Transgénicos , Modelos Neurológicos , Factores de Transcripción NFATC/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/toxicidad , Tacrolimus/farmacología , alfa-Sinucleína/genética
4.
Stem Cell Reports ; 17(4): 993-1008, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35276091

RESUMEN

The ability to precisely edit the genome of human induced pluripotent stem cell (iPSC) lines using CRISPR/Cas9 has enabled the development of cellular models that can address genotype to phenotype relationships. While genome editing is becoming an essential tool in iPSC-based disease modeling studies, there is no established quality control workflow for edited cells. Moreover, large on-target deletions and insertions that occur through DNA repair mechanisms have recently been uncovered in CRISPR/Cas9-edited loci. Yet the frequency of these events in human iPSCs remains unclear, as they can be difficult to detect. We examined 27 iPSC clones generated after targeting 9 loci and found that 33% had acquired large, on-target genomic defects, including insertions and loss of heterozygosity. Critically, all defects had escaped standard PCR and Sanger sequencing analysis. We describe a cost-efficient quality control strategy that successfully identified all edited clones with detrimental on-target events and could facilitate the integrity of iPSC-based studies.


Asunto(s)
Células Madre Pluripotentes Inducidas , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Homocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Control de Calidad
5.
Mol Ther Nucleic Acids ; 29: 189-203, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35860385

RESUMEN

Mutations in the TECPR2 gene are the cause of an ultra-rare neurological disorder characterized by intellectual disability, impaired speech, motor delay, and hypotonia evolving to spasticity, central sleep apnea, and premature death (SPG49 or HSAN9; OMIM: 615031). Little is known about the biological function of TECPR2, and there are currently no available disease-modifying therapies for this disease. Here we describe implementation of an antisense oligonucleotide (ASO) exon-skipping strategy targeting TECPR2 c.1319delT (p.Leu440Argfs∗19), a pathogenic variant that results in a premature stop codon within TECPR2 exon 8. We used patient-derived fibroblasts and induced pluripotent stem cell (iPSC)-derived neurons homozygous for the p.Leu440Argfs∗19 mutation to model the disease in vitro. Both patient-derived fibroblasts and neurons showed lack of TECPR2 protein expression. We designed and screened ASOs targeting sequences across the TECPR2 exon 8 region to identify molecules that induce exon 8 skipping and thereby remove the premature stop signal. TECPR2 exon 8 skipping restored in-frame expression of a TECPR2 protein variant (TECPR2ΔEx8) containing 1,300 of 1,411 amino acids. Optimization of ASO sequences generated a lead candidate (ASO-005-02) with ∼27 nM potency in patient-derived fibroblasts. To examine potential functional rescue induced by ASO-005-02, we used iPSC-derived neurons to analyze the neuronal localization of TECPR2ΔEx8 and showed that this form of TECPR2 retains the distinct, punctate neuronal expression pattern of full-length TECPR2. Finally, ASO-005-02 had an acceptable tolerability profile in vivo following a single 20-mg intrathecal dose in cynomolgus monkeys, showing some transient non-adverse behavioral effects with no correlating histopathology. Broad distribution of ASO-005-02 and induction of TECPR2 exon 8 skipping was detected in multiple central nervous system (CNS) tissues, supporting the potential utility of this therapeutic strategy for a subset of patients suffering from this rare disease.

6.
Methods Mol Biol ; 2191: 109-134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32865742

RESUMEN

Optogenetics provides a powerful approach for investigating neuronal electrophysiology at the scale required for drug discovery applications. Probing synaptic function with high throughput using optogenetics requires robust tools that enable both precise stimulation of and facile readout of synaptic activity. Here we describe two functional assays to achieve this end: (1) a pre-synaptic calcium assay that utilizes the channelrhodopsin, CheRiff, patterned optogenetic stimulus, and the pre-synaptically targeted calcium reporter jRGECO1a to monitor pre-synaptic changes in calcium influx and (2) a synaptic transmission assay in which CheRiff and cytosolic jRGECO1a are expressed in non-overlapping sets of neurons, enabling pre-synaptic stimulation and post-synaptic readout of activity. This chapter describes the methodology and practical considerations for implementation of these two assays.


Asunto(s)
Calcio/metabolismo , Channelrhodopsins/genética , Neuronas/metabolismo , Optogenética/métodos , Animales , Canales de Calcio Tipo N/genética , Humanos , Ratas , Transducción de Señal/genética , Sinapsis/genética , Sinapsinas/química , Transmisión Sináptica/genética
7.
Sci Transl Med ; 13(583)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658354

RESUMEN

The E4 allele of the apolipoprotein E gene (APOE) has been established as a genetic risk factor for many diseases including cardiovascular diseases and Alzheimer's disease (AD), yet its mechanism of action remains poorly understood. APOE is a lipid transport protein, and the dysregulation of lipids has recently emerged as a key feature of several neurodegenerative diseases including AD. However, it is unclear how APOE4 perturbs the intracellular lipid state. Here, we report that APOE4, but not APOE3, disrupted the cellular lipidomes of human induced pluripotent stem cell (iPSC)-derived astrocytes generated from fibroblasts of APOE4 or APOE3 carriers, and of yeast expressing human APOE isoforms. We combined lipidomics and unbiased genome-wide screens in yeast with functional and genetic characterization to demonstrate that human APOE4 induced altered lipid homeostasis. These changes resulted in increased unsaturation of fatty acids and accumulation of intracellular lipid droplets both in yeast and in APOE4-expressing human iPSC-derived astrocytes. We then identified genetic and chemical modulators of this lipid disruption. We showed that supplementation of the culture medium with choline (a soluble phospholipid precursor) restored the cellular lipidome to its basal state in APOE4-expressing human iPSC-derived astrocytes and in yeast expressing human APOE4 Our study illuminates key molecular disruptions in lipid metabolism that may contribute to the disease risk linked to the APOE4 genotype. Our study suggests that manipulating lipid metabolism could be a therapeutic approach to help alleviate the consequences of carrying the APOE4 allele.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Apolipoproteínas E , Homeostasis , Humanos , Neuroglía
8.
Cell Rep ; 33(1): 108224, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33027662

RESUMEN

The ε4 allele of apolipoprotein E (APOE4) is a genetic risk factor for many diseases, including late-onset Alzheimer's disease (AD). We investigate the cellular consequences of APOE4 in human iPSC-derived astrocytes, observing an endocytic defect in APOE4 astrocytes compared with their isogenic APOE3 counterparts. Given the evolutionarily conserved nature of endocytosis, we built a yeast model to identify genetic modifiers of the endocytic defect associated with APOE4. In yeast, only the expression of APOE4 results in dose-dependent defects in both endocytosis and growth. We discover that increasing expression of the early endocytic adaptor protein Yap1802p, a homolog of the human AD risk factor PICALM, rescues the APOE4-induced endocytic defect. In iPSC-derived human astrocytes, increasing expression of PICALM similarly reverses endocytic disruptions. Our work identifies a functional interaction between two AD genetic risk factors-APOE4 and PICALM-centered on the conserved biological process of endocytosis.


Asunto(s)
Enfermedad de Alzheimer/genética , Apolipoproteína E4/metabolismo , Endocitosis/fisiología , Enfermedad de Alzheimer/patología , Humanos , Factores de Riesgo
9.
Cell Syst ; 4(2): 242-250.e4, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28131823

RESUMEN

Synucleinopathies, including Parkinson's disease (PD), are associated with the misfolding and mistrafficking of alpha-synuclein (α-syn). Here, using an ascorbate peroxidase (APEX)-based labeling method combined with mass spectrometry, we defined a network of proteins in the immediate vicinity of α-syn in living neurons to shed light on α-syn function. This approach identified 225 proteins, including synaptic proteins, proteins involved in endocytic vesicle trafficking, the retromer complex, phosphatases and mRNA binding proteins. Many were in complexes with α-syn, and some were encoded by genes known to be risk factors for PD and other neurodegenerative diseases. Endocytic trafficking and mRNA translation proteins within this spatial α-syn map overlapped with genetic modifiers of α-syn toxicity, developed in an accompanying study (Khurana et al., this issue of Cell Systems). Our data suggest that perturbation of these particular pathways is directly related to the spatial localization of α-syn within the cell. These approaches provide new avenues to systematically examine protein function and pathology in living cells.


Asunto(s)
Ascorbato Peroxidasas/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , alfa-Sinucleína/metabolismo , Animales , Ascorbato Peroxidasas/química , Células Cultivadas , Células HEK293 , Humanos , Peróxido de Hidrógeno/química , Espectrometría de Masas , Neuronas/citología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Transporte de Proteínas , Ratas , alfa-Sinucleína/química
10.
Cell Syst ; 4(2): 157-170.e14, 2017 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-28131822

RESUMEN

Numerous genes and molecular pathways are implicated in neurodegenerative proteinopathies, but their inter-relationships are poorly understood. We systematically mapped molecular pathways underlying the toxicity of alpha-synuclein (α-syn), a protein central to Parkinson's disease. Genome-wide screens in yeast identified 332 genes that impact α-syn toxicity. To "humanize" this molecular network, we developed a computational method, TransposeNet. This integrates a Steiner prize-collecting approach with homology assignment through sequence, structure, and interaction topology. TransposeNet linked α-syn to multiple parkinsonism genes and druggable targets through perturbed protein trafficking and ER quality control as well as mRNA metabolism and translation. A calcium signaling hub linked these processes to perturbed mitochondrial quality control and function, metal ion transport, transcriptional regulation, and signal transduction. Parkinsonism gene interaction profiles spatially opposed in the network (ATP13A2/PARK9 and VPS35/PARK17) were highly distinct, and network relationships for specific genes (LRRK2/PARK8, ATXN2, and EIF4G1/PARK18) were confirmed in patient induced pluripotent stem cell (iPSC)-derived neurons. This cross-species platform connected diverse neurodegenerative genes to proteinopathy through specific mechanisms and may facilitate patient stratification for targeted therapy.


Asunto(s)
Enfermedades Neurodegenerativas/patología , alfa-Sinucleína/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Ataxina-2/química , Ataxina-2/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Susceptibilidad a Enfermedades , Retículo Endoplásmico/metabolismo , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/metabolismo , Redes Reguladoras de Genes/genética , Genoma Fúngico , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Neurodegenerativas/genética , Neuronas/citología , Neuronas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/genética
11.
Science ; 342(6161): 983-7, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24158904

RESUMEN

The induced pluripotent stem (iPS) cell field holds promise for in vitro disease modeling. However, identifying innate cellular pathologies, particularly for age-related neurodegenerative diseases, has been challenging. Here, we exploited mutation correction of iPS cells and conserved proteotoxic mechanisms from yeast to humans to discover and reverse phenotypic responses to α-synuclein (αsyn), a key protein involved in Parkinson's disease (PD). We generated cortical neurons from iPS cells of patients harboring αsyn mutations, who are at high risk of developing PD dementia. Genetic modifiers from unbiased screens in a yeast model of αsyn toxicity led to identification of early pathogenic phenotypes in patient neurons. These included nitrosative stress, accumulation of endoplasmic reticulum (ER)-associated degradation substrates, and ER stress. A small molecule identified in a yeast screen (NAB2), and the ubiquitin ligase Nedd4 it affects, reversed pathologic phenotypes in these neurons.


Asunto(s)
Bencimidazoles/farmacología , Neuronas/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animales , Bencimidazoles/química , Estrés del Retículo Endoplásmico/efectos de los fármacos , Femenino , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Mutación , Neurogénesis , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/genética , Ratas , alfa-Sinucleína/genética
12.
Science ; 334(6060): 1241-5, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-22033521

RESUMEN

Aß (beta-amyloid peptide) is an important contributor to Alzheimer's disease (AD). We modeled Aß toxicity in yeast by directing the peptide to the secretory pathway. A genome-wide screen for toxicity modifiers identified the yeast homolog of phosphatidylinositol binding clathrin assembly protein (PICALM) and other endocytic factors connected to AD whose relationship to Aß was previously unknown. The factors identified in yeast modified Aß toxicity in glutamatergic neurons of Caenorhabditis elegans and in primary rat cortical neurons. In yeast, Aß impaired the endocytic trafficking of a plasma membrane receptor, which was ameliorated by endocytic pathway factors identified in the yeast screen. Thus, links between Aß, endocytosis, and human AD risk factors can be ascertained with yeast as a model system.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Endocitosis , Fragmentos de Péptidos/metabolismo , Saccharomyces cerevisiae , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Clatrina/metabolismo , Citoesqueleto/metabolismo , Susceptibilidad a Enfermedades , Estudios de Asociación Genética , Pruebas Genéticas , Glutamatos/metabolismo , Humanos , Proteínas de Ensamble de Clatrina Monoméricas/genética , Proteínas de Ensamble de Clatrina Monoméricas/metabolismo , Neuronas/fisiología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Multimerización de Proteína , Transporte de Proteínas , Ratas , Factores de Riesgo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vías Secretoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA