Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mikrochim Acta ; 191(1): 71, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38168828

RESUMEN

The complex structure and function of the human central nervous system that develops from the neural tube made in vitro modeling quite challenging until the discovery of brain organoids. Human-induced pluripotent stem cells-derived brain organoids offer recapitulation of the features of early human neurodevelopment in vitro, including the generation, proliferation, and differentiation into mature neurons and micro-macroglial cells, as well as the complex interactions among these diverse cell types of the developing brain. Recent advancements in brain organoids, microfluidic systems, real-time sensing technologies, and their cutting-edge integrated use provide excellent models and tools for emulation of fundamental neurodevelopmental processes, the pathology of neurological disorders, personalized transplantation therapy, and high-throughput neurotoxicity testing by bridging the gap between two-dimensional models and the complex three-dimensional environment in vivo. In this review, we summarize how bioengineering approaches are applied to mitigate the limitations of brain organoids for biomedical and clinical research. We further provide an extensive overview and future perspectives of the humanized brain organoids-on-chip platforms with integrated sensors toward brain organoid intelligence and biocomputing studies. Such approaches might pave the way for increasing approvable clinical applications by solving their current limitations.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades del Sistema Nervioso , Humanos , Encéfalo , Neuronas , Células Madre Pluripotentes Inducidas/metabolismo , Organoides
2.
Curr Opin Cell Biol ; 87: 102340, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38401182

RESUMEN

Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) protein expressed in specific types of glial cells in the nervous system. The expression of GFAP is highly regulated during brain development and in neurological diseases. The presence of distinct GFAP-isoforms in various cell types, developmental stages, and diseases indicates that GFAP (post-)transcriptional regulation has a role in glial cell physiology and pathology. GFAP-isoforms differ in sub-cellular localisation, IF-network assembly properties, and IF-dynamics which results in distinct molecular interactions and mechanical properties of the IF-network. Therefore, GFAP (post-)transcriptional regulation is likely a mechanism by which radial glia, astrocytes, and glioma cells can modulate cellular function.


Asunto(s)
Astrocitos , Filamentos Intermedios , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Filamentos Intermedios/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Isoformas de Proteínas/genética , Regulación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA