Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Med Genet A ; : e63643, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656665

RESUMEN

The mitochondrial phosphate carrier is critical for adenosine triphosphate synthesis by serving as the primary means for mitochondrial phosphate import across the inner membrane. Variants in the SLC25A3 gene coding mitochondrial phosphate carrier lead to failure in inorganic phosphate transport across mitochondria. The critical dependence on mitochondria as an energy source is especially evident in tissues with high-energy demands such as the heart, muscle; defects in the mitochondrial energy production machinery underlie a wide range of primary mitochondrial disorders that present with cardiac and muscle diseases. The characteristic clinical picture of a prominent early-onset hypertrophic cardiomyopathy and lactic acidosis may be an indication for analysis of the SLC25A3 gene. Here, described a patient with suspicion of infantile Pompe disease due to involvement of heart and muscle and high-level of plasma creatinine kinase but finally diagnosed mitochondrial phosphate-carrier deficiency.

2.
Mol Syndromol ; 15(2): 156-160, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38585546

RESUMEN

Introduction: Primary carnitine deficiency (PCD) is a rare autosomal recessive disorder caused by loss of function mutations in the solute carrier family 22 member 5 (SLC22A5) gene that encodes a high-affinity sodium-ion-dependent organic cation transporter protein (OCTN2). Carnitine deficiency can result in acute metabolic decompensation or, in a more insidious presentation, cardiomyopathy. Cardiomyopathy associated with PCD often presents with life-threatening heart failure. This presentation also usually includes skeletal muscle myopathy. Early recognition of this disorder and treatment with carnitine can avoid life-threatening complications related to cardiomyopathy. Case Presentation: Herein, we present a 10-month-old male patient with PCD, which was diagnosed while investigating the etiology of dilated cardiomyopathy and confirmed by molecular genetic analysis. Conclusion: Homozygous c.254_265 insGGCTCGCCACC (p.I89Gfs) pathogenic variant of the SLC22A5 gene was detected. With oral L-carnitine supplementation, the free carnitine level increased up to 14 µmol/L and the symptoms disappeared. LVEF increased by 45-70%. We would like to emphasize that this problem is a combination of the metabolic decompensation and the cardiac phenotypes, which are usually separated to either phenotype.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA