Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 50(10): 8729-8742, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37642759

RESUMEN

Horticultural crops are an essential part of food and nutritional security. Moreover, these form an integral part of the agricultural economy and have enormous economic potential. They are a rich source of nutrients that are beneficial to human health. Plant breeding of horticultural crops has focussed primarily on increasing the productivity and related traits of these crops. However, fruit and vegetable quality is paramount to their perishability, marketability, and consumer acceptance. The improved nutritional value is beneficial to underprivileged and undernourished communities. Due to a declining genetic base, conventional plant breeding does not contribute much to quality improvement as the existing natural allelic variations and crossing barriers between cultivated and wild species limit it. Over the past two decades, 'omics' and modern biotechnological approaches have made it possible to decode the complex genomes of crop plants, assign functions to the otherwise many unknown genes, and develop genome-wide DNA markers. Genetic engineering has enabled the validation of these genes and the introduction of crucial agronomic traits influencing various quality parameters directly or indirectly. This review discusses the significant advances in the quality improvement of horticultural crops, including shelf life, aroma, browning, nutritional value, colour, and many other related traits.


Asunto(s)
Fitomejoramiento , Mejoramiento de la Calidad , Humanos , Productos Agrícolas/genética , Biotecnología , Fenotipo
2.
Mol Biol Rep ; 51(1): 41, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38158512

RESUMEN

While global climate change poses a significant environmental threat to agriculture, the increasing population is another big challenge to food security. To address this, developing crop varieties with increased productivity and tolerance to biotic and abiotic stresses is crucial. Breeders must identify traits to ensure higher and consistent yields under inconsistent environmental challenges, possess resilience against emerging biotic and abiotic stresses and satisfy customer demands for safer and more nutritious meals. With the advent of omics-based technologies, molecular tools are now integrated with breeding to understand the molecular genetics of genotype-based traits and develop better climate-smart crops. The rapid development of omics technologies offers an opportunity to generate novel datasets for crop species. Identifying genes and pathways responsible for significant agronomic traits has been made possible by integrating omics data with genetic and phenotypic information. This paper discusses the importance and use of omics-based strategies, including genomics, transcriptomics, proteomics and phenomics, for agricultural and horticultural crop improvement, which aligns with developing better adaptability in these crop species to the changing climate conditions.


Asunto(s)
Biotecnología , Fitomejoramiento , Productos Agrícolas/genética , Proteómica , Agricultura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA