Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Langmuir ; 39(5): 1885-1896, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36693216

RESUMEN

Ferrocifens, lipophilic organometallic complexes, comprise a biologically active redox motif [ferrocenyl-ene-p-phenol] which confers very interesting cytotoxic properties to this family. However, because of their highly lipophilic nature, a formulation stage is required before being administered in vivo. In recent decades, ferrocifen lipid nanocapsules (LNCs) have been successfully formulated and have demonstrated anticancer activity on multidrug-resistant cancers in several mice and rat models (glioblastoma, breast cancer, and metastatic melanoma). A recent family of ferrocifens (succinimidoalkyl-ferrociphenols, including P722) appears to be most efficacious on several resistant cancer cell lines, with IC50 values in the nanomolar range together with promising in vivo results on murine ovarian cancer models. As LNCs are composed of an oily core (caprylic/capric triglycerides), modulation of the succinimido-ferrociphenol lipophilicity could be a valuable approach toward improving the drug loading in LNCs. As the drug loading of the diphenol P722 in LNCs was low, it was structurally modified to increase its lipophilicity and thereby the payload in LNCs. Chemical modification led to a series of five succinimido-ferrocifens. Results confirmed that these slight structural modifications led to increased drug loading in LNCs for all ferrocifens, with no reduction of their cytotoxicity on the SKOV3 ovarian cancer cell line. Interestingly, encapsulation of two of the ferrocifens, diester P769 and monophenolic ester (E)-P998, led to the formation of a gel. This was unprecedented behavior, a phenomenon that could be rationalized in terms of the positioning of ferrocifens in LNCs as shown by the decrease of interfacial tension measurements at the water/oil interface. Moreover, these results highlighted the importance of obtaining a gel of this particular motif, in which the acetylated phenolic ring and the succinimidoalkyl moieties are mutually cis relative to the central double bond. Promising perspectives to use these ferrocifen-loaded LNCs to treat glioblastoma could be readily envisaged by local application of the gel in the cavity after tumor resection.


Asunto(s)
Glioblastoma , Nanocápsulas , Neoplasias Ováricas , Ratas , Ratones , Animales , Femenino , Humanos , Nanocápsulas/química , Glioblastoma/tratamiento farmacológico , Lípidos/química , Estructura Molecular , Sistemas de Liberación de Medicamentos , Neoplasias Ováricas/tratamiento farmacológico
2.
Pharm Res ; 38(4): 681-691, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33829340

RESUMEN

PURPOSE: Current preclinical therapeutic strategies involving nanomedicine require increasingly sophisticated nanosystems and the characterization of the complexity of such nanoassemblies is becoming a major issue. Accurate characterization is often the factor that can accelerate the translational approaches of nanomedicines and their pharmaceutical development to reach the clinic faster. We conducted a case study involving the adsorption of the NFL-TBS.40-63 (NFL) peptide (derived from neurofilaments) to the surface of lipid nanocapsules (LNCs) (a combined nanosystem used to target glioblastoma cells) to develop an analytical approach combining the separation and the quantification in a single step, leading to the characterization of the proportion of free peptide and thus the proportion of peptide adsorbed to the lipid nanocapsule surface. METHODS: LNC suspensions, NFL peptide solution and LNC/NFL peptide mixtures were characterized using a Size-Exclusion Chromatography method (with a chromatographic apparatus). In addition, this method was compared to centrifugal-filtration devices, currently used in literature for this case study. RESULTS: Combining the steps for separation and characterization in one single sequence improved the accuracy and robustness of the data and led to reproducible results. Moreover the data deviation observed for the centrifugal-filtration devices demonstrated the limits for this increasingly used characterization approach, explained by the poor separation quality and highlighting the importance for the method optimization. The high potential of the technique was shown, proving that H-bond and/or electrostatic interactions mediate adsorption of the NFL peptide to the surface of LNCs. CONCLUSIONS: Used only as a characterization tool, the process using chromatographic apparatus is less time and solvent consuming than classical Size-Exclusion Chromatography columns only used for separation. It could be a promising tool for the scientific community for characterizing the interactions of other combinations of nanosystems and active biological agents.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Portadores de Fármacos/química , Glioblastoma/tratamiento farmacológico , Nanocápsulas/química , Proteínas de Neurofilamentos/química , Fragmentos de Péptidos/química , Adsorción , Línea Celular Tumoral , Química Farmacéutica , Humanos , Lípidos/química , Proteínas de Neurofilamentos/administración & dosificación , Fragmentos de Péptidos/administración & dosificación
3.
Pharm Res ; 37(8): 149, 2020 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-32681392

RESUMEN

PURPOSE: Complexities surrounding the manufacture and quality control of nanomedicines become increasingly apparent. This research article offers a case study to investigate how, at the laboratory scale, various stages of liposome and nanoparticle synthesis affect the amount of residual solvent found in the formulations. The objective is to bring insights on the reliability of each of these processes to provide final products which meet regulatory standards and facilitate identifying possible bottleneck early during the development process. METHODS: The residual solvent at various stages of preparation and purification was measured by headspace gas chromatography. Liposomes were prepared by two different methods with and without solvent. Polymer nanoparticles prepared via nanoprecipitation and purified by ultrafiltration were studied. The effects of purification by size exclusion chromatography and dialysis were also investigated. RESULTS: The complete removal of residual solvent requires processes which go beyond usual preparation methods. CONCLUSIONS: This work might prove valuable as a reference for scientists of different fields to compare their own practices and streamline the translation of nanomedicines into efficacious and safe drug products.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ácidos Grasos/química , Lecitinas/química , Liposomas/química , Nanopartículas/química , Poliésteres/química , Polietilenglicoles/química , Solventes/química , Cromatografía en Gel , Composición de Medicamentos , Cromatografía de Gases y Espectrometría de Masas , Humanos , Nanomedicina
4.
Pestic Biochem Physiol ; 157: 1-12, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31153457

RESUMEN

The use of neurotoxic chemical insecticides has led to consequences against the environment, insect resistances and side-effects on non-target organisms. In this context, we developed a novel strategy to optimize insecticide efficacy while reducing doses. It is based on nanoencapsulation of a pyrethroid insecticide, deltamethrin, used as synergistic agent, combined with a non-encapsulated oxadiazine (indoxacarb). In this case, the synergistic agent is used to increase insecticide efficacy by activation of calcium-dependant intracellular signaling pathways involved in the regulation of the membrane target of insecticides. In contrast to permethrin (pyrethroid type I), we report that deltamethrin (pyrethroid type II) produces an increase in intracellular calcium concentration in insect neurons through the reverse Na/Ca exchanger. The resulting intracellular calcium rise rendered voltage-gated sodium channels more sensitive to lower concentration of the indoxacarb metabolite DCJW. Based on these findings, in vivo studies were performed on the cockroach Periplaneta americana and mortality rates were measured at 24 h, 48 h and 72 h after treatments. Comparative studies of the toxicity between indoxacarb alone and indoxacarb combined with deltamethrin or nanoencapsulated deltamethrin (LNC-deltamethrin), indicated that LNC-deltamethrin potentiated the effect of indoxacarb. We also demonstrated that nanoencapsulation protected deltamethrin from esterase-induced enzymatic degradation and led to optimize indoxacarb efficacy while reducing doses. Moreover, our results clearly showed the benefit of using LNC-deltamethrin rather than piperonyl butoxide and deltamethrin in combination commonly used in formulation. This innovative strategy offers promise for increasing insecticide efficacy while reducing both doses and side effects on non-target organisms.


Asunto(s)
Calcio/metabolismo , Insecticidas/química , Insecticidas/farmacología , Nanocápsulas/química , Nitrilos/química , Nitrilos/farmacología , Oxazinas/química , Oxazinas/farmacología , Piretrinas/química , Piretrinas/farmacología , Animales , Células Cultivadas , Cucarachas , Masculino , Estructura Molecular , Periplaneta/efectos de los fármacos , Intercambiador de Sodio-Calcio/metabolismo
5.
Nanomedicine ; 11(5): 1237-45, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25791812

RESUMEN

The purpose of this study is the assessment of gel technology based on a lauroyl derivative of gemcitabine encapsulated in lipid nanocapsules delivered subcutaneously or intravenously after dilution to (i) target lymph nodes, (ii) induce less systemic toxicity and (iii) combat mediastinal metastases from an orthotopic model of human, squamous, non-small-cell lung cancer Ma44-3 cells implanted in severe combined immunodeficiency mice. The gel technology mainly targeted lymph nodes as revealed by the biodistribution study. Moreover, the gel technology induced no significant myelosuppression (platelet count) in comparison with the control saline group, unlike the conventional intravenous gemcitabine hydrochloride treated group (P<0.05). Besides, the gel technology, delivered subcutaneously twice a week, was able to combat locally mediastinal metastases from the orthotopic lung tumor and to significantly delay death (P<0.05) as was the diluted gel technology delivered intravenously three times a week. FROM THE CLINICAL EDITOR: Lung cancer is one of the leading causes of mortality worldwide. A significant proportion of patients with this disease have lymph node metastasis. In this study, the authors investigated the use of lipid nanocapsules, loaded with the lipophilic pro-drug gemcitabine for targeting tumors in lymph nodes after subcutaneous injection. This delivery method was shown to be effective in controlling tumor progression and may be useful in future clinical use.


Asunto(s)
Antimetabolitos Antineoplásicos/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Lípidos/química , Neoplasias Pulmonares/tratamiento farmacológico , Metástasis Linfática/prevención & control , Nanocápsulas/química , Animales , Antimetabolitos Antineoplásicos/farmacocinética , Antimetabolitos Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Desoxicitidina/administración & dosificación , Desoxicitidina/farmacocinética , Desoxicitidina/uso terapéutico , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Neoplasias Pulmonares/patología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/patología , Metástasis Linfática/patología , Mediastino/patología , Ratones Desnudos , Ratones SCID , Gemcitabina
6.
Soft Matter ; 10(11): 1767-77, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24652455

RESUMEN

A new method to form a nanoparticle-structured hydrogel is reported; it is based on the drug being loaded into the nanoparticles to form a solid structure. A lipophilic form of gemcitabine (modified lauroyl), an anti-cancer drug, was encapsulated in lipid nanocapsules (LNCs), using a phase-inversion temperature process. A gel was formed spontaneously, depending on the LNC concentration. The drug loading, measured with total entrapment efficiency, and the rheological properties of the gel were assessed. Physical studies (surface tension measurements) showed that modified gemcitabine was localised at the oil-water interface of the LNC, and that the gemcitabine moieties of the prodrug were exposed to the water phase. This particular assembly promoted inter-LNC interactions via hydrogen bonds between gemcitabine moieties that led to an LNC gel structure in water, without a matrix, like a tridimensional pearl necklace. Dilution of the gel produced a gemcitabine-loaded LNC suspension in water, and these nanoparticles presented cytotoxic activity to various cancer cell lines to a greater degree than the native drug. Finally, the syringeability of the formulation was successfully tested and perspectives of its use as a nanomedicine (intratumoural or subcutaneous injection) can be foreseen.


Asunto(s)
Desoxicitidina/análogos & derivados , Portadores de Fármacos/administración & dosificación , Nanocápsulas/administración & dosificación , Nanomedicina , Línea Celular Tumoral , Desoxicitidina/administración & dosificación , Desoxicitidina/química , Portadores de Fármacos/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/administración & dosificación , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Lípidos/química , Nanocápsulas/química , Nanopartículas/administración & dosificación , Nanopartículas/química , Gemcitabina
7.
Mol Pharm ; 10(2): 430-44, 2013 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-22978251

RESUMEN

Gemcitabine, an anticancer agent which acts against a wide range of solid tumors, is known to be rapidly deaminated in blood to the inactive metabolite 2',2'-difluorodeoxyuridine and to be rapidly excreted by the urine. Moreover, many cancers develop resistance against this drug, such as loss of transporters and kinases responsible for the first phosphorylation step. To increase its therapeutic levels, gemcitabine is administered at high doses (1000 mg/m(2)) causing side effects (neutropenia, nausea, and so forth). To improve its metabolic stability and cytotoxic activity and to limit the phenomena of resistance many alternatives have emerged, such as the synthesis of prodrugs. Modifying an anticancer agent is not new; paclitaxel or ara-C has been subjected to such changes. This review summarizes the various chemical modifications that can be found in the 4-(N)- and 5'-positions of gemcitabine. They can provide (i) a protection against deamination, (ii) a better storage and (iii) a prolonged release in the cell, (iv) a possible use in the case of deoxycytidine kinase deficiency, and (v) transporter deficiency. These new gemcitabine-based sysems have the potential to improve the clinical outcome of a chemotherapy strategy.


Asunto(s)
Antimetabolitos Antineoplásicos/química , Desoxicitidina/análogos & derivados , Animales , Antimetabolitos Antineoplásicos/farmacocinética , Desoxicitidina/química , Desoxicitidina/farmacocinética , Humanos , Estimación de Kaplan-Meier , Modelos Biológicos , Fosforilación , Profármacos/química , Profármacos/farmacocinética , Gemcitabina
8.
Int J Pharm ; 646: 123421, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37722495

RESUMEN

Glioblastoma is the most common and aggressive brain tumor. Current treatments do not allow to cure the patients. This is partly due to the blood-brain barrier (BBB), which limits the delivery of drugs to the pathological site. To overcome this, we developed liposomes functionalized with a neurofilament-derived peptide, NFL-TBS.40-63 (NFL), known for its highly selective targeting of glioblastoma cells. First, in vitro BBB model was developed to check whether the NFL can also promote barrier crossing in addition to its active targeting capacity. Permeability experiments showed that the NFL peptide was able to cross the BBB. Moreover, when the BBB was in a pathological situation, i.e., an in vitro blood-brain tumor barrier (BBTB), the passage of the NFL peptide was greater while maintaining its glioblastoma targeting capacity. When the NFL peptide was associated to liposomes, it enhanced their ability to be internalized into glioblastoma cells after passage through the BBTB, compared to liposomes without NFL. The cellular uptake of liposomes was limited in the endothelial cell monolayer in comparison to the glioblastoma one. These data indicated that the NFL peptide is a promising cell-penetrating peptide tool when combined with drug delivery systems for the treatment of glioblastoma.

9.
Int J Pharm ; 642: 123120, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37307960

RESUMEN

Benznidazole, a poorly soluble in water drug, is the first-line medication for the treatment of Chagas disease, but long treatment periods at high dosages cause several adverse effects with insufficient activity in the chronic phase. According to these facts, there is a serious need for novel benznidazole formulations for improving the chemotherapy of Chagas disease. Thus, this work aimed to incorporate benznidazole into lipid nanocapsules for improving its solubility, dissolution rate in different media, and permeability. Lipid nanocapsules were prepared by the phase inversion technique and were fully characterized. Three formulations were obtained with a diameter of 30, 50, and 100 nm and monomodal size distribution with a low polydispersity index and almost neutral zeta potential. Drug encapsulation efficiency was between 83 and 92 % and the drug loading was between 0.66 and 1.04 %. Loaded formulations were stable under storage for one year at 4 °C. Lipid nanocapsules were found to protect benznidazole in simulated gastric fluid and provide a sustained release platform for the drug in a simulated intestinal fluid containing pancreatic enzymes. The small size and the almost neutral surface charge of these lipid nanocarriers improved their penetration through mucus and such formulations showed a reduced chemical interaction with gastric mucin glycoproteins. LNCs. The incorporation of benznidazole in lipid nanocapsules improved the drug permeability across intestinal epithelium by 10-fold compared with the non-encapsulated drug while the exposure of the cell monolayers to these nanoformulations did not affect the integrity of the epithelium.


Asunto(s)
Nanocápsulas , Nanocápsulas/química , Liberación de Fármacos , Lípidos/química , Permeabilidad , Estabilidad de Medicamentos
10.
Biomater Adv ; 153: 213549, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37453243

RESUMEN

The objective of this work was to develop an implantable therapeutic hydrogel that will ensure continuity in treatment between surgery and radiochemotherapy for patients with glioblastoma (GBM). A hydrogel of self-associated gemcitabine-loaded lipid nanocapsules (LNC) has shown therapeutic efficacy in vivo in murine GBM resection models. To improve the targeting of GBM cells, the NFL-TBS.40-63 peptide (NFL), was associated with LNC. The LNC-based hydrogels were formulated with the NFL. The peptide was totally and instantaneously adsorbed at the LNC surface, without modifying the hydrogel mechanical properties, and remained adsorbed to the LNC surface after the hydrogel dissolution. In vitro studies on GBM cell lines showed a faster internalization of the LNC and enhanced cytotoxicity, in the presence of NFL. Finally, in vivo studies in the murine GBM resection model proved that the gemcitabine-loaded LNC with adsorbed NFL could target the non-resected GBM cells and significantly delay or even inhibit the apparition of recurrences.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Nanocápsulas , Ratones , Humanos , Animales , Nanocápsulas/química , Nanocápsulas/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Hidrogeles/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Gemcitabina , Sistemas de Liberación de Medicamentos , Lípidos/química , Lípidos/uso terapéutico
11.
Can J Microbiol ; 58(3): 311-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22356530

RESUMEN

The aim of this study was to unravel, by focusing on cell surface properties, the underlying virulence factors contributing to the difference in the pathogenicity observed in two Acinetobacter baumannii strains isolated from the same patient. The two strains were phenotypically different: (i) a mucoid strain (AB-M), highly virulent in a mouse model of pneumonia, and (ii) a nonmucoid strain (AB-NM), moderately virulent in the same model. The study of the cell surface properties included the microbial adhesion to solvents method, the measurement of the electrophoretic mobility of bacteria, the analysis of biofilm formation by calcofluor white staining, the adherence to silicone catheters, and scanning electron microscopy. The AB-NM strain was more hydrophobic, more adherent to silicone catheters, and produced more biofilm than the AB-M strain. Scanning electron microscopy showed bacterial cells with a rough surface and the formation of large cell clusters for AB-NM whereas the AB-M strain had a smooth surface and formed only a few cell clusters. Contrary to the results of most previous studies, cell surface properties were not correlated to the virulence described in our experimental model, indicating that mechanisms other than adherence may be involved in the expression of A. baumannii virulence.


Asunto(s)
Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidad , Virulencia/fisiología , Acinetobacter baumannii/aislamiento & purificación , Acinetobacter baumannii/ultraestructura , Animales , Adhesión Bacteriana , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/ultraestructura , Biopelículas , Catéteres/microbiología , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Factores de Virulencia/metabolismo
12.
Eur J Pharm Biopharm ; 174: 155-166, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35413403

RESUMEN

Polymer nanoparticles (NPs) are extensively studied as drug delivery systems for various therapeutic indications, including drug and imaging agent delivery to the brain. Despite intensive research, their toxicological profile has yet to be fully characterized. In particular, the more subtle effects of nanomaterials on inflammatory processes have scarcely been investigated. Surface properties of NPs are amongst parameters governing interactions between living cells and NPs. They could considerably influence the toxicity and inflammatory response of the cells exposed to NPs. Polymeric NPs investigated here present a core-shell structure. The core is constituted of hydrophobic poly(lactic acid) (PLA) block and the surface is composed of a shell of hydrophilic block of polyethylene glycol (PEG). The effect of PEG chain length coating on the expression of genes involved in the inflammation response was investigated in two vascular endothelial cell lines (bEnd.3 and HUVEC) by qPCR. Moreover, ROS generation following NP uptake was evaluated. PEGylated NPs induce a mild and transient activation of inflammatory cytokine and chemokine genes. However, differences in PEG chain length did not show any significant effect on cytokine and chemokine gene expression and PEGylated NPs did not trigger ROS generation. The present results could contribute significantly to a deeper understanding of nanomaterial interactions and toxicity with vascular endothelial cells, guiding scientists in material coating choices.


Asunto(s)
Células Endoteliales , Nanopartículas , Citocinas , Sistemas de Liberación de Medicamentos , Células Endoteliales/metabolismo , Nanopartículas/química , Tamaño de la Partícula , Polietilenglicoles/química , Polímeros/química , Especies Reactivas de Oxígeno
13.
Biochim Biophys Acta ; 1798(6): 1144-52, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20153720

RESUMEN

The phase behavior of mixtures formed with palmitic acid (PA) and one of the following sterols (dihydrocholesterol, ergosterol, 7-dehydrocholesterol, stigmasterol and stigmastanol), in a PA/sterol molar ratio of 3/7, has been characterized by IR and (2)H NMR spectroscopy at different pH. Our study shows that it is possible to form liquid-ordered (lo) lamellar phases with these binary non-phospholipid mixtures. The characterization of alkyl chain dynamics of PA in these systems revealed the large ordering effect of the sterols. It was possible to extrude these systems, using standard extrusion techniques, to form large unilamellar vesicles (LUVs), except in the case of ergosterol-containing mixture. The resulting LUVs displayed a very limited passive permeability consistent with the high sterol concentration. In addition, the stability of these PA/sterol self-assembled bilayers was also found to be pH-sensitive, therefore, potentially useful as nanovectors. By examining different sterols, we could establish some correlations between the structure of these bilayers and their permeability properties. The structure of the side chain at C17 of the sterol appears to play a prime role in the mixing properties with fatty acid.


Asunto(s)
Liposomas/química , Ácido Palmítico/química , Esteroles/química , Espectroscopía de Resonancia Magnética
14.
Front Med Technol ; 3: 791596, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35047971

RESUMEN

Glioblastoma is one of the most aggressive brain tumors and is associated with a very low overall median survival despite the current treatment. The standard of care used in clinic is the Stupp's protocol which consists of a maximal resection of the tumor when possible, followed by radio and chemotherapy using temozolomide. However, in most cases, glioblastoma cells infiltrate healthy tissues and lead to fatal recurrences. There are a lot of hurdles to overcome in the development of new therapeutic strategies such as tumor heterogeneity, cell infiltration, alkylating agent resistance, physiological barriers, etc., and few treatments are on the market today. One of them is particularly appealing because it is a local therapy, which does not bring additional invasiveness since tumor resection is included in the gold standard treatment. They are implants: the Gliadel® wafers, which are deposited post-surgery. Nevertheless, in addition to presenting important undesirable effects, it does not bring any major benefit in the therapy despite the strategy being particularly attractive. The purpose of this review is to provide an overview of recent advances in the development of innovative therapeutic strategies for glioblastoma using an implant-type approach. The combination of this local strategy with effective targeting of the tumor microenvironment as a whole, also developed in this review, may be of interest to alleviate some of the obstacles encountered in the treatment of glioblastoma.

15.
Mater Sci Eng C Mater Biol Appl ; 126: 112188, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34082987

RESUMEN

Nanoparticle-loaded hydrogels are attractive pharmaceutical drug delivery systems that combine the advantages of both hydrogel (local administration and/or sustained drug release) and nanoparticle (stealthiness, targeting and decreased toxicity). The design of nanoparticle-loaded hydrogels is largely conventional, consisting of the dispersion of nanoparticles in a natural or synthetic polymer matrix to form a gel network. Novel nanoparticle-loaded hydrogels architecture could provide advantages in terms of innovation and application. We focused on the development of lipid nanocapsule (LNC)-based hydrogels without the use of a polymer matrix as a platform for drug delivery. Cytidine was modified by grafting palmitoyl chains (CytC16) and the new entity was added during the LNC phase-inversion formulation process allowing spontaneous gelation. Positioned at the oil/water interface, CytC16 acts as a crosslinking agent between LNCs. Association of the LNCs in a three-dimensional network led to the formation of polymer-free hydrogels. The viscoelastic properties of the LNC-based hydrogels depended on the LNC concentration and CytC16 loading but were not affected by the LNC size distribution. The LNC and drug-release profiles were controlled by the mechanical properties of the LNC-based hydrogels (slower release profiles correlated with higher viscoelasticity). Finally, the subcutaneous administration of LNC-based hydrogels led to classic inflammatory reactions of the foreign body-reaction type due to the endogenous character of CytC16, shown by cellular viability assays. New-generation nanoparticle-loaded hydrogels (LNC-based polymer-free hydrogels) show promise as implants for pharmaceutical applications. Once LNC release is completed, no gel matrix remains at the injection site, minimizing the additional toxicity due to the persistence of polymeric implants. Sustained drug-release profiles can be controlled by the mechanical properties of the hydrogels and could be tailor-made, depending on the therapeutic strategy chosen.


Asunto(s)
Nanocápsulas , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Hidrogeles , Lípidos , Polímeros
16.
Langmuir ; 26(15): 12733-9, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20597522

RESUMEN

Systems composed of a monoalkylated amphiphile and a sterol have been shown to form stable liquid-ordered (lo) lamellar phases; these include negatively charged mixtures of unprotonated palmitic acid/cholesterol (Chol) or cholesterol sulfate (Schol) and mixtures of positively charged cetylpyridinium chloride/Schol. Large unilamellar vesicles (LUVs) could be formed by these systems, using conventional extrusion methods. The passive permeability of these LUVs was drastically limited, a phenomenon associated with the high sterol content. In the present paper, we showed that octadecyl methyl sulfoxide (OMSO), a neutral monoalkylated amphiphile, can form, in the presence of cholesterol, LUVs that are stable at room temperature. Differential scanning calorimetry, infrared spectroscopy, and nuclear magnetic resonance spectroscopy of deuterium were used to characterize the phase behavior of OMSO/Chol mixtures. A temperature-composition diagram summarizing the behavior of the OMSO/Chol system is proposed; it includes a eutectic with an OMSO/Chol molar ratio of 5/5. It is found that the fluid phase observed at temperature higher than 43 degrees C is metastable at room temperature, and this situation allows extruding these mixtures to form stable LUVs at room temperature. This distinct behavior is associated with the strong H-bond capability of the sulfoxide group. The properties associated with this neutral formulation expand the potential of these non-phospholipid liposomes for applications in several areas such as drug delivery.

17.
J Colloid Interface Sci ; 561: 838-848, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31813576

RESUMEN

HYPOTHESIS: Prilling process is one of advanced techniques for manufacturing microspheres of controlled and uniform size. In this process, homogenous polymer droplets fall into an extraction medium. The aim of this study was to identify the key parameters influencing the behavior of PLGA polymer-based droplets falling into a complex extraction medium, to select appropriate conditions for prilling. EXPERIMENTS: Polymer solutions and extraction media were characterized by determining their viscosity, density and surface tension. A simple model simulating the prilling process was developed to study droplet behavior. Particle shape and velocity at the air-liquid interface and during sedimentation in the container were analyzed step by step. The correlations between the variables studied were visualized by principal component analysis (PCA). FINDINGS: Droplet deformation at the interface greatly affected the recovery and final particle shape. It depended on the viscosity ratio of polymer solution/extraction medium. The particle shape recovery depended on the viscosity and density of extraction media and polymer solutions. The solidification speed is also an important parameter. In media which the solvent diffused slowly, particles were able to relax and recover their shape, however, they can also deform during sedimentation and collision with the bottom of the cuvette.

18.
Int J Pharm ; 559: 220-227, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30703501

RESUMEN

Lauroyl-gemcitabine lipid nanocapsules (GemC12-LNC) hydrogel, administered intratumorally or perisurgically in the tumor resection cavity, increases animal survival in several orthotopic GBM models. We hypothesized that GemC12-LNC can be used as nanodelivery platform for other drugs, to obtain a combined local therapeutic approach for GBM. Paclitaxel (PTX) was selected as a model molecule and PTX-GemC12-LNC formulation was evaluated in terms of physicochemical and mechanical properties. The PTX-GemC12-LNC hydrogel stability and drug release were evaluated over time showing no significant differences compared to GemC12-LNC. The drug combination was evaluated on several GBM cell lines showing increased cytotoxic activity compared to the original formulation and synergy between PTX and GemC12. Our results suggest that GemC12-LNC hydrogel can be used as nanodelivery platform for dual drug delivery to encapsulate active agents with different mechanisms of action to achieve a better antitumor efficacy against GBM or other solid tumors.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Hidrogeles/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacología , Portadores de Fármacos/química , Combinación de Medicamentos , Liberación de Fármacos/efectos de los fármacos , Hidrogeles/química , Inyecciones/métodos , Lípidos/química , Lípidos/farmacología , Ratones , Nanocápsulas/química , Nanomedicina/métodos , Paclitaxel/química , Paclitaxel/farmacología , Ratas , Gemcitabina
19.
Sci Rep ; 9(1): 11565, 2019 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-31399627

RESUMEN

Preparation of sophisticated delivery systems for nanomedicine applications generally involve multi-step procedures using organic solvents. In this study, we have developed a simple self-assembling process to prepare docetaxel-loaded hyaluronic acid (HA) nanocapsules by using a self-emulsification process without the need of organic solvents, heat or high shear forces. These nanocapsules, which comprise an oily core and a shell consisting of an assembly of surfactants and hydrophobically modified HA, have a mean size of 130 nm, a zeta potential of -20 mV, and exhibit high docetaxel encapsulation efficiency. The nanocapsules exhibited an adequate stability in plasma. Furthermore, in vitro studies performed using A549 lung cancer cells, showed effective intracellular delivery of docetaxel. On the other hand, blank nanocapsules showed very low cytotoxicity. Overall, these results highlight the potential of self-emulsifying HA nanocapsules for intracellular drug delivery.


Asunto(s)
Antineoplásicos/administración & dosificación , Docetaxel/administración & dosificación , Ácido Hialurónico/química , Nanocápsulas/química , Células A549 , Antineoplásicos/farmacología , Docetaxel/farmacología , Sistemas de Liberación de Medicamentos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Tensoactivos/química
20.
Drug Discov Today ; 23(2): 416-423, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29074439

RESUMEN

Gemcitabine is a nucleoside analog currently used for the treatment of various solid tumors as a single agent or in combination with other chemotherapeutic drugs. Its use against highly aggressive brain tumors (glioblastoma) has been evaluated in preclinical and clinical trials leading to controversial results. Gemcitabine can inhibit DNA chain elongation, is a potent radiosensitizer and it can enhance antitumor immune activity, but it also presents some drawbacks (e.g., short half-life, side effects, chemoresistance). The aim of this review is to discuss the challenges related to the use of gemcitabine for glioblastoma and to report recent studies that suggest overcoming these obstacles opening new perspectives for its use in the field (e.g., gemcitabine derivatives and/or nanomedicines).


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Glioblastoma/tratamiento farmacológico , Animales , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Humanos , Nanomedicina/métodos , Fármacos Sensibilizantes a Radiaciones/farmacología , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA