Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Clin Immunol ; 44(2): 54, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265673

RESUMEN

The term common variable immunodeficiency (CVID) encompasses a clinically diverse group of disorders, mainly characterized by hypogammaglobulinemia, insufficient specific antibody production, and recurrent infections. The genetics of CVID is complex, and monogenic defects account for only a portion of cases, typically <30%. Other proposed mechanisms include digenic, oligogenic, or polygenic inheritance and epigenetic dysregulation. In this study, we aimed to assess the role of skewed X-chromosome inactivation (XCI) in CVID. Within our cohort of 131 genetically analyzed CVID patients, we selected female patients with rare variants in CVID-associated genes located on the X-chromosome. Four patients harboring heterozygous variants in BTK (n = 2), CD40LG (n = 1), and IKBKG (n = 1) were included in the study. We assessed XCI status using the HUMARA assay and an NGS-based method to quantify the expression of the 2 alleles in mRNA. Three of the 4 patients (75%) exhibited skewed XCI, and the mutated allele was predominantly expressed in all cases. Patient 1 harbored a hypomorphic variant in BTK (p.Tyr418His), patient 3 had a pathogenic variant in CD40LG (c.288+1G>A), and patient 4 had a hypomorphic variant in IKBKG (p.Glu57Lys) and a heterozygous splice variant in TNFRSF13B (TACI) (c.61+2T>A). Overall, the analysis of our cohort suggests that CVID in a small proportion of females (1.6% in our cohort) is caused by skewed XCI and highly penetrant gene variants on the X-chromosome. Additionally, skewed XCI may contribute to polygenic effects (3.3% in our cohort). These results indicate that skewed XCI may represent another piece in the complex puzzle of CVID genetics.


Asunto(s)
Agammaglobulinemia , Inmunodeficiencia Variable Común , Humanos , Femenino , Alelos , Anticuerpos , Ligando de CD40 , Cromosomas , Quinasa I-kappa B
2.
J Clin Immunol ; 43(8): 1953-1963, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37597073

RESUMEN

Chronic granulomatous disease (CGD) is a prototypical inborn error of immunity affecting phagocytes, in which these cells are unable to produce reactive oxygen species. CGD is caused by defects in genes encoding subunits of the NADPH oxidase enzyme complex (CYBA, CYBB, CYBC1, NCF1, NCF2, NCF4); inflammatory responses are dysregulated, and patients are highly susceptible to recurrent severe bacterial and fungal infections. X-linked CGD (XL-CGD), caused by mutations in the CYBB gene, is the most common and severe form of CGD. In this study, we describe the analytical processes undertaken in 3 families affected with XL-CGD to illustrate several molecular challenges in the genetic diagnosis of this condition: in family 1, a girl with a heterozygous deletion of CYBB exon 13 and skewed X-chromosome inactivation (XCI); in family 2, a boy with a hemizygous deletion of CYBB exon 7, defining its consequences at the mRNA level; and in family 3, 2 boys with the same novel intronic variant in CYBB (c.1151 + 6 T > A). The variant affected the splicing process, although a small fraction of wild-type mRNA was produced. Their mother was a heterozygous carrier, while their maternal grandmother was a carrier in form of gonosomal mosaicism. In summary, using a variety of techniques, including an NGS-based targeted gene panel and deep amplicon sequencing, copy number variation calling strategies, microarray-based comparative genomic hybridization, and cDNA analysis to define splicing defects and skewed XCI, we show how to face and solve some uncommon genetic mechanisms in the diagnosis of XL-CGD.


Asunto(s)
Enfermedad Granulomatosa Crónica , Mosaicismo , Masculino , Femenino , Humanos , Enfermedad Granulomatosa Crónica/diagnóstico , Enfermedad Granulomatosa Crónica/genética , Hibridación Genómica Comparativa , Variaciones en el Número de Copia de ADN , Mutación/genética , ARN Mensajero , Cromosomas
4.
Eur J Hum Genet ; 31(1): 48-54, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36289407

RESUMEN

Somatic genetic variants have been studied for several years mostly concerning cancer, where they contribute to its origin and development. It is also clear that the somatic variants load is greater in aged individuals in comparison to younger ones, pointing to a cause/consequence of the senescence process. More recently, researchers have focused on the role of this type of variation in healthy tissue and its dynamics in cell lineages and different organs. In addition, somatic variants have been described to contribute to monogenic diseases, and the number of evidences of their role in complex disorders is also increasing. Thanks to recent advances in next-generation sequencing technologies, this type of genetic variation can be now more easily studied than in the past, although we still face some important limitations. Novel strategies for sampling, sequencing and filtering are being investigated to detect these variants, although validating them with an orthogonal approach will most likely still be needed. In this review, we aim to update our knowledge of somatic variation detection and its relation to healthy tissue and non-cancer diseases.


Asunto(s)
Neoplasias , Humanos , Anciano , Neoplasias/genética , Neoplasias/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento , Variación Genética
5.
Front Immunol ; 13: 897975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784294

RESUMEN

Syndromic immunodeficiencies are a heterogeneous group of inborn errors of immunity that can affect the development of non-immune organs and systems. The genetic basis of these immunodeficiencies is highly diverse, ranging from monogenic defects to large chromosomal aberrations. Antibody deficiency is the most prevalent immunological abnormality in patients with syndromic immunodeficiencies caused by chromosomal rearrangements, and usually manifests as a common variable immunodeficiency (CVID)-like phenotype. Here we describe a patient with a complex phenotype, including neurodevelopmental delay, dysmorphic features, malformations, and CVID (hypogammaglobulinemia, reduced pre-switch and switch memory B cells, and impaired vaccine response). Microarray-based comparative genomic hybridization (aCGH) revealed a 13-Mb deletion on chromosome 4q22.2-q24 involving 53 genes, some of which were related to the developmental manifestations in our patient. Although initially none of the affected genes could be linked to his CVID phenotype, subsequent reanalysis identified NFKB1 haploinsufficiency as the cause. This study underscores the value of periodic reanalysis of unsolved genetic studies performed with high-throughput technologies (eg, next-generation sequencing and aCGH). This is important because of the ongoing incorporation of new data establishing the relationship between genes and diseases. In the present case, NFKB1 had not been associated with human disease at the time aCGH was performed. Eight years later, reanalysis of the genes included in the chromosome 4 deletion enabled us to identify NFKB1 haploinsufficiency as the genetic cause of our patient's CVID. In the future, other genes included in the deletion may be linked to human disease, allowing us to better define the molecular basis of our patient's complex clinical phenotype.


Asunto(s)
Agammaglobulinemia , Inmunodeficiencia Variable Común , Enfermedades de Inmunodeficiencia Primaria , Aberraciones Cromosómicas , Deleción Cromosómica , Cromosomas Humanos Par 4 , Inmunodeficiencia Variable Común/genética , Hibridación Genómica Comparativa , Humanos , Subunidad p50 de NF-kappa B
6.
Front Immunol ; 13: 1014984, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466883

RESUMEN

Autoimmune lymphoproliferative syndrome (ALPS) is a rare primary immune disorder characterized by impaired apoptotic homeostasis. The clinical characteristics include lymphoproliferation, autoimmunity (mainly cytopenia), and an increased risk of lymphoma. A distinctive biological feature is accumulation (>2.5%) of an abnormal cell subset composed of TCRαß+ CD4-CD8- T cells (DNTs). The most common genetic causes of ALPS are monoallelic pathogenic variants in the FAS gene followed by somatic FAS variants, mainly restricted to DNTs. Identification of somatic FAS variants has been typically addressed by Sanger sequencing in isolated DNTs. However, this approach can be costly and technically challenging, and may not be successful in patients with normal DNT counts receiving immunosuppressive treatment. In this study, we identified a novel somatic mutation in FAS (c.718_719insGTCG) by Sanger sequencing on purified CD3+ cells. We then followed the evolutionary dynamics of the variant along time with an NGS-based approach involving deep amplicon sequencing (DAS) at high coverage (20,000-30,000x). Over five years of clinical follow-up, we obtained six blood samples for molecular study from the pre-treatment (DNTs>7%) and treatment (DNTs<2%) periods. DAS enabled detection of the somatic variant in all samples, even the one obtained after five years of immunosuppressive treatment (DNTs: 0.89%). The variant allele frequency (VAF) range was 4%-5% in pre-treatment samples and <1.5% in treatment samples, and there was a strong positive correlation between DNT counts and VAF (Pearson's R: 0.98, p=0.0003). We then explored whether the same approach could be used in a discovery setting. In the last follow-up sample (DNT: 0.89%) we performed somatic variant calling on the FAS exon 9 DAS data from whole blood and purified CD3+ cells using VarScan 2. The c.718_719insGTCG variant was identified in both samples and showed the highest VAF (0.67% blood, 1.58% CD3+ cells) among >400 variants called. In summary, our study illustrates the evolutionary dynamics of a somatic FAS mutation before and during immunosuppressive treatment. The results show that pathogenic somatic FAS variants can be identified with the use of DAS in whole blood of ALPS patients regardless of their DNT counts.


Asunto(s)
Síndrome Linfoproliferativo Autoinmune , Neoplasias Encefálicas , Glioma , Niño , Humanos , Síndrome Linfoproliferativo Autoinmune/diagnóstico , Síndrome Linfoproliferativo Autoinmune/genética , Síndrome Linfoproliferativo Autoinmune/terapia
7.
Sci Rep ; 11(1): 12940, 2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34155260

RESUMEN

There are increasing evidences showing the contribution of somatic genetic variants to non-cancer diseases. However, their detection using massive parallel sequencing methods still has important limitations. In addition, the relative importance and dynamics of somatic variation in healthy tissues are not fully understood. We performed high-depth whole-exome sequencing in 16 samples from patients with a previously determined pathogenic somatic variant for a primary immunodeficiency and tested different variant callers detection ability. Subsequently, we explored the load of somatic variants in the whole blood of these individuals and validated it by amplicon-based deep sequencing. Variant callers allowing low frequency read thresholds were able to detect most of the variants, even at very low frequencies in the tissue. The genetic load of somatic coding variants detectable in whole blood is low, ranging from 1 to 2 variants in our dataset, except for one case with 17 variants compatible with clonal haematopoiesis under genetic drift. Because of the ability we demonstrated to detect this type of genetic variation, and its relevant role in disorders such as primary immunodeficiencies, we suggest considering this model of gene mosaicism in future genetic studies and considering revisiting previous massive parallel sequencing data in patients with negative results.


Asunto(s)
Susceptibilidad a Enfermedades , Predisposición Genética a la Enfermedad , Variación Genética , Enfermedades del Sistema Inmune/genética , Enfermedades del Sistema Inmune/inmunología , Mosaicismo , Alelos , Biomarcadores , Genómica/métodos , Enfermedades del Sistema Inmune/sangre , Enfermedades del Sistema Inmune/diagnóstico , Mutación , Especificidad de Órganos/genética , Reproducibilidad de los Resultados
8.
Eur J Med Genet ; 63(5): 103920, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32222431

RESUMEN

Autoinflammatory diseases comprise a wide range of syndromes caused by dysregulation of the innate immune response. They are difficult to diagnose due to their phenotypic heterogeneity and variable expressivity. Thus, the genetic origin of the disease remains undetermined for an important proportion of patients. We aim to identify causal genetic variants in patients with suspected autoinflammatory disease and to test the advantages and limitations of the clinical exome gene panels for molecular diagnosis. Twenty-two unrelated patients with clinical features of autoinflammatory diseases were analyzed using clinical exome sequencing (~4800 genes), followed by bioinformatic analyses to detect likely pathogenic variants. By integrating genetic and clinical information, we found a likely causative heterozygous genetic variant in NFKBIA (p.D31N) in a North-African patient with a clinical picture resembling the deficiency of interleukin-1 receptor antagonist, and a heterozygous variant in DNASE2 (p.G322D) in a Spanish patient with a suspected lupus-like monogenic disorder. We also found variants likely to increase the susceptibility to autoinflammatory diseases in three additional Spanish patients: one with an initial diagnosis of juvenile idiopathic arthritis who carries two heterozygous UNC13D variants (p.R727Q and p.A59T), and two with early-onset inflammatory bowel disease harbouring NOD2 variants (p.L221R and p.A728V respectively). Our results show a similar proportion of molecular diagnosis to other studies using whole exome or targeted resequencing in primary immunodeficiencies. Thus, despite its main limitation of not including all candidate genes, clinical exome targeted sequencing can be an appropriate approach to detect likely causative variants in autoinflammatory diseases.


Asunto(s)
Enfermedades Autoinmunes/genética , Secuenciación del Exoma/métodos , Pruebas Genéticas/métodos , Enfermedades Autoinmunes/patología , Desoxirribonucleasas/genética , Femenino , Pruebas Genéticas/normas , Humanos , Masculino , Proteínas de la Membrana/genética , Mutación , Inhibidor NF-kappaB alfa/genética , Proteína Adaptadora de Señalización NOD2/genética , Secuenciación del Exoma/normas
9.
Front Immunol ; 11: 107, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32076423

RESUMEN

Background: Primary immunodeficiencies (PIDs) are a heterogeneous group of disorders. The lack of comprehensive disease-specific mutation databases may hinder or delay classification of the genetic variants found in samples from these patients. This is especially true for familial hemophagocytic lymphohistiocytosis (FHL), a life-threatening PID classically considered an autosomal recessive condition, but with increasingly demonstrated genetic heterogeneity. Objective: The aim of this study was to build an open-access repository to collect detailed information on the known genetic variants reported in FHL. Methods: We manually reviewed more than 120 articles to identify all reported variants related to FHL. We retrieved relevant information about the allelic status, the number of patients with the same variant, and whether functional assays were done. We stored all the data retrieved in a PostgreSQL database and then built a website on top of it, using the Django framework. Results: The database designed (FHLdb) (https://www.biotoclin.org/FHLdb) contains comprehensive information on reported variants in the 4 genes related to FHL (PRF1, UNC13D, STXBP2, STX11). It comprises 240 missense, 69 frameshift, 51 nonsense, 51 splicing, 10 in-frame indel, 7 deep intronic, and 5 large rearrangement variants together with their allelic status, carrier(s) information, and functional evidence. All genetic variants have been classified as pathogenic, likely pathogenic, uncertain significance, likely benign or benign, according to the American College of Medical Genetics guidelines. Additionally, it integrates information from other relevant databases: clinical evidence from ClinVar and UniProt, population allele frequency from ExAC and gnomAD, and pathogenicity predictions from well-recognized tools (e.g., PolyPhen-2, SIFT). Finally, a diagram depicts the location of the variant relative to the gene exon and protein domain structures. Conclusion: FHLdb includes a broad range of data on the reported genetic variants in familial HLH genes. It is a free-access and easy-to-use resource that will facilitate the interpretation of molecular results of FHL patients, and it illustrates the potential value of disease-specific databases for other PIDs.


Asunto(s)
Bases de Datos Genéticas , Linfohistiocitosis Hemofagocítica/genética , Variación Genética , Humanos
12.
Front Genet ; 10: 1315, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31998370

RESUMEN

Sorting of individual chromosomes by Flow Cytometry (flow-sorting) is an enrichment method to potentially simplify genome assembly by isolating chromosomes from the context of the genome. We have recently developed a workflow to sequence native, unamplified DNA and applied it to the smallest human chromosome, the Y chromosome. Here, we modify improve upon that workflow to increase DNA recovery from chromosome sorting as well as sequencing yield. We apply it to sequence and assemble the largest human chromosome - chromosome 1 - of a Chinese individual using a single Oxford Nanopore MinION flow cell. We generate a selective and highly continuous assembly whose continuity reaches into the order of magnitude of the human reference GRCh38. We then use this assembly to call candidate structural variants against the reference and find 685 putative novel SV candidates. We propose this workflow as a potential solution to assemble structurally complex chromosomes, or the study of very large plant or animal genomes that might challenge traditional assembly strategies.

13.
Front Immunol ; 9: 636, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29867916

RESUMEN

Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency characterized by recurrent infections, hypogammaglobulinemia and poor response to vaccines. Its diagnosis is made based on clinical and immunological criteria, after exclusion of other diseases that can cause similar phenotypes. Currently, less than 20% of cases of CVID have a known underlying genetic cause. We have analyzed whole-exome sequencing and copy number variants data of 36 children and adolescents diagnosed with CVID and healthy relatives to estimate the proportion of monogenic cases. We have replicated an association of CVID to p.C104R in TNFRSF13B and reported the second case of homozygous patient to date. Our results also identify five causative genetic variants in LRBA, CTLA4, NFKB1, and PIK3R1, as well as other very likely causative variants in PRKCD, MAPK8, or DOCK8 among others. We experimentally validate the effect of the LRBA stop-gain mutation which abolishes protein production and downregulates the expression of CTLA4, and of the frameshift indel in CTLA4 producing expression downregulation of the protein. Our results indicate a monogenic origin of at least 15-24% of the CVID cases included in the study. The proportion of monogenic patients seems to be lower in CVID than in other PID that have also been analyzed by whole exome or targeted gene panels sequencing. Regardless of the exact proportion of CVID monogenic cases, other genetic models have to be considered for CVID. We propose that because of its prevalence and other features as intermediate penetrancies and phenotypic variation within families, CVID could fit with other more complex genetic scenarios. In particular, in this work, we explore the possibility of CVID being originated by an oligogenic model with the presence of heterozygous mutations in interacting proteins or by the accumulation of detrimental variants in particular immunological pathways, as well as perform association tests to detect association with rare genetic functional variation in the CVID cohort compared to healthy controls.


Asunto(s)
Antígeno CTLA-4/genética , Inmunodeficiencia Variable Común/genética , Genotipo , Mutación/genética , Proteína Activadora Transmembrana y Interactiva del CAML/genética , Adolescente , Células Cultivadas , Niño , Preescolar , Estudios de Cohortes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Leucocitos Mononucleares/fisiología , Activación de Linfocitos , Modelos Biológicos , Secuenciación del Exoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA