Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nature ; 617(7961): 629-636, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138085

RESUMEN

In natural photosynthesis, the light-driven splitting of water into electrons, protons and molecular oxygen forms the first step of the solar-to-chemical energy conversion process. The reaction takes place in photosystem II, where the Mn4CaO5 cluster first stores four oxidizing equivalents, the S0 to S4 intermediate states in the Kok cycle, sequentially generated by photochemical charge separations in the reaction center and then catalyzes the O-O bond formation chemistry1-3. Here, we report room temperature snapshots by serial femtosecond X-ray crystallography to provide structural insights into the final reaction step of Kok's photosynthetic water oxidation cycle, the S3→[S4]→S0 transition where O2 is formed and Kok's water oxidation clock is reset. Our data reveal a complex sequence of events, which occur over micro- to milliseconds, comprising changes at the Mn4CaO5 cluster, its ligands and water pathways as well as controlled proton release through the hydrogen-bonding network of the Cl1 channel. Importantly, the extra O atom Ox, which was introduced as a bridging ligand between Ca and Mn1 during the S2→S3 transition4-6, disappears or relocates in parallel with Yz reduction starting at approximately 700 µs after the third flash. The onset of O2 evolution, as indicated by the shortening of the Mn1-Mn4 distance, occurs at around 1,200 µs, signifying the presence of a reduced intermediate, possibly a bound peroxide.


Asunto(s)
Oxígeno , Fotosíntesis , Complejo de Proteína del Fotosistema II , Oxidación-Reducción , Oxígeno/química , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Protones , Agua/química , Agua/metabolismo , Manganeso/química , Manganeso/metabolismo , Calcio/química , Calcio/metabolismo , Peróxidos/metabolismo
2.
Nature ; 569(7756): E6, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31048811

RESUMEN

Change history: In this Letter, the rotation signs around 90°, 135° and 15° were missing and in the HTML, Extended Data Tables 2 and 3 were the wrong tables; these errors have been corrected online.

3.
Nature ; 569(7755): 289-292, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31019305

RESUMEN

The human MT1 and MT2 melatonin receptors1,2 are G-protein-coupled receptors (GPCRs) that help to regulate circadian rhythm and sleep patterns3. Drug development efforts have targeted both receptors for the treatment of insomnia, circadian rhythm and mood disorders, and cancer3, and MT2 has also been implicated in type 2 diabetes4,5. Here we report X-ray free electron laser (XFEL) structures of the human MT2 receptor in complex with the agonists 2-phenylmelatonin (2-PMT) and ramelteon6 at resolutions of 2.8 Å and 3.3 Å, respectively, along with two structures of function-related mutants: H2085.46A (superscripts represent the Ballesteros-Weinstein residue numbering nomenclature7) and N862.50D, obtained in complex with 2-PMT. Comparison of the structures of MT2 with a published structure8 of MT1 reveals that, despite conservation of the orthosteric ligand-binding site residues, there are notable conformational variations as well as differences in [3H]melatonin dissociation kinetics that provide insights into the selectivity between melatonin receptor subtypes. A membrane-buried lateral ligand entry channel is observed in both MT1 and MT2, but in addition the MT2 structures reveal a narrow opening towards the solvent in the extracellular part of the receptor. We provide functional and kinetic data that support a prominent role for intramembrane ligand entry in both receptors, and suggest that there might also be an extracellular entry path in MT2. Our findings contribute to a molecular understanding of melatonin receptor subtype selectivity and ligand access modes, which are essential for the design of highly selective melatonin tool compounds and therapeutic agents.


Asunto(s)
Electrones , Rayos Láser , Modelos Moleculares , Receptor de Melatonina MT2/química , Receptor de Melatonina MT2/metabolismo , Cristalización , Diabetes Mellitus Tipo 2/genética , Humanos , Indenos/química , Indenos/metabolismo , Ligandos , Melatonina/análogos & derivados , Melatonina/química , Melatonina/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Receptor de Melatonina MT1/química , Receptor de Melatonina MT1/metabolismo , Receptor de Melatonina MT2/genética , Relación Estructura-Actividad , Especificidad por Sustrato
4.
Nature ; 569(7755): 284-288, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31019306

RESUMEN

Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin-serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors.


Asunto(s)
Electrones , Rayos Láser , Modelos Moleculares , Receptor de Melatonina MT1/química , Receptor de Melatonina MT1/metabolismo , Acetamidas/química , Acetamidas/metabolismo , Secuencia de Aminoácidos , Antidepresivos/química , Antidepresivos/metabolismo , Cristalización , Humanos , Indenos/química , Indenos/metabolismo , Ligandos , Melatonina/análogos & derivados , Melatonina/química , Simulación del Acoplamiento Molecular , Mutación , Receptor de Melatonina MT1/agonistas , Receptor de Melatonina MT1/genética , Receptor de Serotonina 5-HT2C/química , Relación Estructura-Actividad , Especificidad por Sustrato
6.
Nature ; 563(7731): 421-425, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30405241

RESUMEN

Inspired by the period-four oscillation in flash-induced oxygen evolution of photosystem II discovered by Joliot in 1969, Kok performed additional experiments and proposed a five-state kinetic model for photosynthetic oxygen evolution, known as Kok's S-state clock or cycle1,2. The model comprises four (meta)stable intermediates (S0, S1, S2 and S3) and one transient S4 state, which precedes dioxygen formation occurring in a concerted reaction from two water-derived oxygens bound at an oxo-bridged tetra manganese calcium (Mn4CaO5) cluster in the oxygen-evolving complex3-7. This reaction is coupled to the two-step reduction and protonation of the mobile plastoquinone QB at the acceptor side of PSII. Here, using serial femtosecond X-ray crystallography and simultaneous X-ray emission spectroscopy with multi-flash visible laser excitation at room temperature, we visualize all (meta)stable states of Kok's cycle as high-resolution structures (2.04-2.08 Å). In addition, we report structures of two transient states at 150 and 400 µs, revealing notable structural changes including the binding of one additional 'water', Ox, during the S2→S3 state transition. Our results suggest that one water ligand to calcium (W3) is directly involved in substrate delivery. The binding of the additional oxygen Ox in the S3 state between Ca and Mn1 supports O-O bond formation mechanisms involving O5 as one substrate, where Ox is either the other substrate oxygen or is perfectly positioned to refill the O5 position during O2 release. Thus, our results exclude peroxo-bond formation in the S3 state, and the nucleophilic attack of W3 onto W2 is unlikely.


Asunto(s)
Oxígeno/metabolismo , Fotosíntesis , Agua/química , Agua/metabolismo , Calcio/metabolismo , Cristalografía por Rayos X , Cianobacterias/química , Rayos Láser , Manganeso/metabolismo , Modelos Moleculares , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/metabolismo , Plastoquinona/metabolismo
7.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34341104

RESUMEN

Prostaglandin D2 (PGD2) signals through the G protein-coupled receptor (GPCR) CRTH2 to mediate various inflammatory responses. CRTH2 is the only member of the prostanoid receptor family that is phylogenetically distant from others, implying a nonconserved mechanism of lipid action on CRTH2. Here, we report a crystal structure of human CRTH2 bound to a PGD2 derivative, 15R-methyl-PGD2 (15mPGD2), by serial femtosecond crystallography. The structure revealed a "polar group in"-binding mode of 15mPGD2 contrasting the "polar group out"-binding mode of PGE2 in its receptor EP3. Structural comparison analysis suggested that these two lipid-binding modes, associated with distinct charge distributions of ligand-binding pockets, may apply to other lipid GPCRs. Molecular dynamics simulations together with mutagenesis studies also identified charged residues at the ligand entry port that function to capture lipid ligands of CRTH2 from the lipid bilayer. Together, our studies suggest critical roles of charge environment in lipid recognition by GPCRs.


Asunto(s)
Receptores Inmunológicos/química , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/química , Receptores de Prostaglandina/metabolismo , Cristalografía por Rayos X/métodos , Humanos , Metabolismo de los Lípidos , Simulación de Dinámica Molecular , Mutación , Prostaglandina D2/química , Prostaglandina D2/metabolismo , Conformación Proteica , Receptores Inmunológicos/genética , Receptores de Prostaglandina/genética
8.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468660

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common blood disorder, presenting multiple symptoms, including hemolytic anemia. It affects 400 million people worldwide, with more than 160 single mutations reported in G6PD. The most severe mutations (about 70) are classified as class I, leading to more than 90% loss of activity of the wild-type G6PD. The crystal structure of G6PD reveals these mutations are located away from the active site, concentrating around the noncatalytic NADP+-binding site and the dimer interface. However, the molecular mechanisms of class I mutant dysfunction have remained elusive, hindering the development of efficient therapies. To resolve this, we performed integral structural characterization of five G6PD mutants, including four class I mutants, associated with the noncatalytic NADP+ and dimerization, using crystallography, small-angle X-ray scattering (SAXS), cryogenic electron microscopy (cryo-EM), and biophysical analyses. Comparisons with the structure and properties of the wild-type enzyme, together with molecular dynamics simulations, bring forward a universal mechanism for this severe G6PD deficiency due to the class I mutations. We highlight the role of the noncatalytic NADP+-binding site that is crucial for stabilization and ordering two ß-strands in the dimer interface, which together communicate these distant structural aberrations to the active site through a network of additional interactions. This understanding elucidates potential paths for drug development targeting G6PD deficiency.


Asunto(s)
Coenzimas/química , Glucosafosfato Deshidrogenasa/química , Leucina/química , Mutación , NADP/química , Prolina/química , Sitios de Unión , Clonación Molecular , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Deficiencia de Glucosafosfato Deshidrogenasa/enzimología , Deficiencia de Glucosafosfato Deshidrogenasa/genética , Deficiencia de Glucosafosfato Deshidrogenasa/patología , Humanos , Cinética , Leucina/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , NADP/metabolismo , Prolina/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
9.
J Am Chem Soc ; 145(46): 25120-25133, 2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-37939223

RESUMEN

The P450 enzyme CYP121 from Mycobacterium tuberculosis catalyzes a carbon-carbon (C-C) bond coupling cyclization of the dityrosine substrate containing a diketopiperazine ring, cyclo(l-tyrosine-l-tyrosine) (cYY). An unusual high-spin (S = 5/2) ferric intermediate maximizes its population in less than 5 ms in the rapid freeze-quenching study of CYP121 during the shunt reaction with peracetic acid or hydrogen peroxide in acetic acid solution. We show that this intermediate can also be observed in the crystalline state by EPR spectroscopy. By developing an on-demand-rapid-mixing method for time-resolved serial femtosecond crystallography with X-ray free-electron laser (tr-SFX-XFEL) technology covering the millisecond time domain and without freezing, we structurally monitored the reaction in situ at room temperature. After a 200 ms peracetic acid reaction with the cocrystallized enzyme-substrate microcrystal slurry, a ferric-hydroperoxo intermediate is observed, and its structure is determined at 1.85 Å resolution. The structure shows a hydroperoxyl ligand between the heme and the native substrate, cYY. The oxygen atoms of the hydroperoxo are 2.5 and 3.2 Å from the iron ion. The end-on binding ligand adopts a near-side-on geometry and is weakly associated with the iron ion, causing the unusual high-spin state. This compound 0 intermediate, spectroscopically and structurally observed during the catalytic shunt pathway, reveals a unique binding mode that deviates from the end-on compound 0 intermediates in other heme enzymes. The hydroperoxyl ligand is only 2.9 Å from the bound cYY, suggesting an active oxidant role of the intermediate for direct substrate oxidation in the nonhydroxylation C-C bond coupling chemistry.


Asunto(s)
Ácido Peracético , Peróxidos , Ligandos , Sistema Enzimático del Citocromo P-450/metabolismo , Hierro , Hemo/química , Tirosina , Carbono
10.
Nature ; 544(7650): 327-332, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28379944

RESUMEN

The angiotensin II receptors AT1R and AT2R serve as key components of the renin-angiotensin-aldosterone system. AT1R has a central role in the regulation of blood pressure, but the function of AT2R is unclear and it has a variety of reported effects. To identify the mechanisms that underlie the differences in function and ligand selectivity between these receptors, here we report crystal structures of human AT2R bound to an AT2R-selective ligand and to an AT1R/AT2R dual ligand, capturing the receptor in an active-like conformation. Unexpectedly, helix VIII was found in a non-canonical position, stabilizing the active-like state, but at the same time preventing the recruitment of G proteins or ß-arrestins, in agreement with the lack of signalling responses in standard cellular assays. Structure-activity relationship, docking and mutagenesis studies revealed the crucial interactions for ligand binding and selectivity. Our results thus provide insights into the structural basis of the distinct functions of the angiotensin receptors, and may guide the design of new selective ligands.


Asunto(s)
Modelos Moleculares , Receptor de Angiotensina Tipo 2/química , Receptor de Angiotensina Tipo 2/metabolismo , Bloqueadores del Receptor Tipo 2 de Angiotensina II/química , Bloqueadores del Receptor Tipo 2 de Angiotensina II/metabolismo , Sitios de Unión/genética , Cristalografía por Rayos X , Diseño de Fármacos , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Conformación Proteica , Receptor de Angiotensina Tipo 1/química , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/agonistas , Receptor de Angiotensina Tipo 2/genética , Transducción de Señal , Relación Estructura-Actividad , Especificidad por Sustrato/genética , beta-Arrestinas/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(23): 12624-12635, 2020 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-32434915

RESUMEN

In oxygenic photosynthesis, light-driven oxidation of water to molecular oxygen is carried out by the oxygen-evolving complex (OEC) in photosystem II (PS II). Recently, we reported the room-temperature structures of PS II in the four (semi)stable S-states, S1, S2, S3, and S0, showing that a water molecule is inserted during the S2 → S3 transition, as a new bridging O(H)-ligand between Mn1 and Ca. To understand the sequence of events leading to the formation of this last stable intermediate state before O2 formation, we recorded diffraction and Mn X-ray emission spectroscopy (XES) data at several time points during the S2 → S3 transition. At the electron acceptor site, changes due to the two-electron redox chemistry at the quinones, QA and QB, are observed. At the donor site, tyrosine YZ and His190 H-bonded to it move by 50 µs after the second flash, and Glu189 moves away from Ca. This is followed by Mn1 and Mn4 moving apart, and the insertion of OX(H) at the open coordination site of Mn1. This water, possibly a ligand of Ca, could be supplied via a "water wheel"-like arrangement of five waters next to the OEC that is connected by a large channel to the bulk solvent. XES spectra show that Mn oxidation (τ of ∼350 µs) during the S2 → S3 transition mirrors the appearance of OX electron density. This indicates that the oxidation state change and the insertion of water as a bridging atom between Mn1 and Ca are highly correlated.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Hidrógeno/metabolismo , Magnesio/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Fotones , Complejo de Proteína del Fotosistema II/química , Quinonas/metabolismo , Agua/metabolismo
12.
Proc Natl Acad Sci U S A ; 117(1): 300-307, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31852825

RESUMEN

A major barrier to defining the structural intermediates that arise during the reversible photointerconversion of phytochromes between their biologically inactive and active states has been the lack of crystals that faithfully undergo this transition within the crystal lattice. Here, we describe a crystalline form of the cyclic GMP phosphodiesterases/adenylyl cyclase/FhlA (GAF) domain from the cyanobacteriochrome PixJ in Thermosynechococcus elongatus assembled with phycocyanobilin that permits reversible photoconversion between the blue light-absorbing Pb and green light-absorbing Pg states, as well as thermal reversion of Pg back to Pb. The X-ray crystallographic structure of Pb matches previous models, including autocatalytic conversion of phycocyanobilin to phycoviolobilin upon binding and its tandem thioether linkage to the GAF domain. Cryocrystallography at 150 K, which compared diffraction data from a single crystal as Pb or after irradiation with blue light, detected photoconversion product(s) based on Fobs - Fobs difference maps that were consistent with rotation of the bonds connecting pyrrole rings C and D. Further spectroscopic analyses showed that phycoviolobilin is susceptible to X-ray radiation damage, especially as Pg, during single-crystal X-ray diffraction analyses, which could complicate fine mapping of the various intermediate states. Fortunately, we found that PixJ crystals are amenable to serial femtosecond crystallography (SFX) analyses using X-ray free-electron lasers (XFELs). As proof of principle, we solved by room temperature SFX the GAF domain structure of Pb to 1.55-Å resolution, which was strongly congruent with synchrotron-based models. Analysis of these crystals by SFX should now enable structural characterization of the early events that drive phytochrome photoconversion.


Asunto(s)
Ficobilinas/metabolismo , Ficocianina/metabolismo , Fitocromo/química , Fitocromo/efectos de la radiación , Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Cristalografía , Cristalografía por Rayos X , Cianobacterias/química , GMP Cíclico , Luz , Modelos Moleculares , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Células Fotorreceptoras/metabolismo , Ficobilinas/química , Ficocianina/química , Conformación Proteica , Dominios Proteicos , Thermosynechococcus , Transactivadores/química
13.
Proc Natl Acad Sci U S A ; 116(9): 3572-3577, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30808749

RESUMEN

Cytochrome c oxidase (CcO) reduces dioxygen to water and harnesses the chemical energy to drive proton translocation across the inner mitochondrial membrane by an unresolved mechanism. By using time-resolved serial femtosecond crystallography, we identified a key oxygen intermediate of bovine CcO. It is assigned to the PR-intermediate, which is characterized by specific redox states of the metal centers and a distinct protein conformation. The heme a3 iron atom is in a ferryl (Fe4+ = O2-) configuration, and heme a and CuB are oxidized while CuA is reduced. A Helix-X segment is poised in an open conformational state; the heme a farnesyl sidechain is H-bonded to S382, and loop-I-II adopts a distinct structure. These data offer insights into the mechanism by which the oxygen chemistry is coupled to unidirectional proton translocation.


Asunto(s)
Complejo IV de Transporte de Electrones/química , Hemo/química , Hierro/química , Oxígeno/química , Animales , Catálisis , Dominio Catalítico , Bovinos , Cobre/química , Cristalografía por Rayos X , Complejo IV de Transporte de Electrones/genética , Oxidación-Reducción , Conformación Proteica
14.
Proc Natl Acad Sci U S A ; 116(51): 25634-25640, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31801874

RESUMEN

How changes in enzyme structure and dynamics facilitate passage along the reaction coordinate is a fundamental unanswered question. Here, we use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL), ambient-temperature X-ray crystallography, computer simulations, and enzyme kinetics to characterize how covalent catalysis modulates isocyanide hydratase (ICH) conformational dynamics throughout its catalytic cycle. We visualize this previously hypothetical reaction mechanism, directly observing formation of a thioimidate covalent intermediate in ICH microcrystals during catalysis. ICH exhibits a concerted helical displacement upon active-site cysteine modification that is gated by changes in hydrogen bond strength between the cysteine thiolate and the backbone amide of the highly strained Ile152 residue. These catalysis-activated motions permit water entry into the ICH active site for intermediate hydrolysis. Mutations at a Gly residue (Gly150) that modulate helical mobility reduce ICH catalytic turnover and alter its pre-steady-state kinetic behavior, establishing that helical mobility is important for ICH catalytic efficiency. These results demonstrate that MISC can capture otherwise elusive aspects of enzyme mechanism and dynamics in microcrystalline samples, resolving long-standing questions about the connection between nonequilibrium protein motions and enzyme catalysis.


Asunto(s)
Cristalografía por Rayos X/métodos , Enzimas , Catálisis , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Enzimas/química , Enzimas/metabolismo , Enzimas/ultraestructura , Hidroliasas/química , Hidroliasas/metabolismo , Hidroliasas/ultraestructura , Modelos Moleculares , Conformación Proteica
15.
Nat Chem Biol ; 15(1): 11-17, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30510194

RESUMEN

Misoprostol is a life-saving drug in many developing countries for women at risk of post-partum hemorrhaging owing to its affordability, stability, ease of administration and clinical efficacy. However, misoprostol lacks receptor and tissue selectivities, and thus its use is accompanied by a number of serious side effects. The development of pharmacological agents combining the advantages of misoprostol with improved selectivity is hindered by the absence of atomic details of misoprostol action in labor induction. Here, we present the 2.5 Å resolution crystal structure of misoprostol free-acid form bound to the myometrium labor-inducing prostaglandin E2 receptor 3 (EP3). The active state structure reveals a completely enclosed binding pocket containing a structured water molecule that coordinates misoprostol's ring structure. Modeling of selective agonists in the EP3 structure reveals rationales for selectivity. These findings will provide the basis for the next generation of uterotonic drugs that will be suitable for administration in low resource settings.


Asunto(s)
Misoprostol/química , Subtipo EP3 de Receptores de Prostaglandina E/química , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Dinoprostona/análogos & derivados , Dinoprostona/química , Dinoprostona/metabolismo , Humanos , Misoprostol/metabolismo , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Subtipo EP3 de Receptores de Prostaglandina E/agonistas , Subtipo EP3 de Receptores de Prostaglandina E/genética , Transducción de Señal , Agua/química
16.
Nat Chem Biol ; 15(2): 206, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30573766

RESUMEN

In the version of this article originally published, the present address for Petr Popov was incorrectly listed as 'Koltech Institute of Science & Technology, Moscow, Russia'. The correct present address is 'Skolkovo Institute of Science and Technology, Moscow, Russia'. The error has been corrected in the HTML and PDF versions of the paper.

17.
J Am Chem Soc ; 142(33): 14249-14266, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32683863

RESUMEN

Soluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme that catalyzes the conversion of methane to methanol at ambient temperature using a nonheme, oxygen-bridged dinuclear iron cluster in the active site. Structural changes in the hydroxylase component (sMMOH) containing the diiron cluster caused by complex formation with a regulatory component (MMOB) and by iron reduction are important for the regulation of O2 activation and substrate hydroxylation. Structural studies of metalloenzymes using traditional synchrotron-based X-ray crystallography are often complicated by partial X-ray-induced photoreduction of the metal center, thereby obviating determination of the structure of the enzyme in pure oxidation states. Here, microcrystals of the sMMOH:MMOB complex from Methylosinus trichosporium OB3b were serially exposed to X-ray free electron laser (XFEL) pulses, where the ≤35 fs duration of exposure of an individual crystal yields diffraction data before photoreduction-induced structural changes can manifest. Merging diffraction patterns obtained from thousands of crystals generates radiation damage-free, 1.95 Å resolution crystal structures for the fully oxidized and fully reduced states of the sMMOH:MMOB complex for the first time. The results provide new insight into the manner by which the diiron cluster and the active site environment are reorganized by the regulatory protein component in order to enhance the steps of oxygen activation and methane oxidation. This study also emphasizes the value of XFEL and serial femtosecond crystallography (SFX) methods for investigating the structures of metalloenzymes with radiation sensitive metal active sites.


Asunto(s)
Oxigenasas/química , Temperatura , Methylosinus trichosporium/enzimología , Modelos Moleculares , Oxidación-Reducción , Oxigenasas/metabolismo , Solubilidad , Rayos X
18.
Inorg Chem ; 59(9): 6000-6009, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32309932

RESUMEN

An important class of non-heme dioxygenases contains a conserved Fe binding site that consists of a 2-His-1-carboxylate facial triad. Results from structural biology show that, in the resting state, these proteins are six-coordinate with aqua ligands occupying the remaining three coordination sites. We have utilized biotin-streptavidin (Sav) technology to design new artificial Fe proteins (ArMs) that have many of the same structural features found within active sites of these non-heme dioxygenases. An Sav variant was isolated that contains the S112E mutation, which installed a carboxylate side chain in the appropriate position to bind to a synthetic FeII complex confined within Sav. Structural studies using X-ray diffraction (XRD) methods revealed a facial triad binding site that is composed of two N donors from the biotinylated ligand and the monodentate coordination of the carboxylate from S112E. Two aqua ligands complete the primary coordination sphere of the FeII center with both involved in hydrogen bond networks within Sav. The corresponding FeIII protein was also prepared and structurally characterized to show a six-coordinate complex with two exogenous acetato ligands. The FeIII protein was further shown to bind an exogenous azido ligand through replacement of one acetato ligand. Spectroscopic studies of the ArMs in solution support the results found by XRD.


Asunto(s)
Dioxigenasas/química , Proteínas de Hierro no Heme/química , Sitios de Unión , Dioxigenasas/metabolismo , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Ligandos , Conformación Molecular , Proteínas de Hierro no Heme/metabolismo
19.
J Synchrotron Radiat ; 26(Pt 2): 346-357, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30855242

RESUMEN

The Macromolecular Femtosecond Crystallography (MFX) instrument at the Linac Coherent Light Source (LCLS) is the seventh and newest instrument at the world's first hard X-ray free-electron laser. It was designed with a primary focus on structural biology, employing the ultrafast pulses of X-rays from LCLS at atmospheric conditions to overcome radiation damage limitations in biological measurements. It is also capable of performing various time-resolved measurements. The MFX design consists of a versatile base system capable of supporting multiple methods, techniques and experimental endstations. The primary techniques supported are forward scattering and crystallography, with capabilities for various spectroscopic methods and time-resolved measurements. The location of the MFX instrument allows for utilization of multiplexing methods, increasing user access to LCLS by running multiple experiments simultaneously.

20.
Proc Natl Acad Sci U S A ; 111(6): E655-62, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24453215

RESUMEN

Crystallography has advanced our understanding of G protein-coupled receptors, but low expression levels and instability in solution have limited structural insights to very few selected members of this large protein family. Using neurotensin receptor 1 (NTR1) as a proof of principle, we show that two directed evolution technologies that we recently developed have the potential to overcome these problems. We purified three neurotensin-bound NTR1 variants from Escherichia coli and determined their X-ray structures at up to 2.75 Å resolution using vapor diffusion crystallization experiments. A crystallized construct was pharmacologically characterized and exhibited ligand-dependent signaling, internalization, and wild-type-like agonist and antagonist affinities. Our structures are fully consistent with all biochemically defined ligand-contacting residues, and they represent an inactive NTR1 state at the cytosolic side. They exhibit significant differences to a previously determined NTR1 structure (Protein Data Bank ID code 4GRV) in the ligand-binding pocket and by the presence of the amphipathic helix 8. A comparison of helix 8 stability determinants between NTR1 and other crystallized G protein-coupled receptors suggests that the occupancy of the canonical position of the amphipathic helix is reduced to various extents in many receptors, and we have elucidated the sequence determinants for a stable helix 8. Our analysis also provides a structural rationale for the long-known effects of C-terminal palmitoylation reactions on G protein-coupled receptor signaling, receptor maturation, and desensitization.


Asunto(s)
Evolución Molecular Dirigida , Escherichia coli/genética , Receptores de Neurotensina/genética , Transducción de Señal , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estabilidad Proteica , Receptores de Neurotensina/química , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA