Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 147(1): 186-200, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37656990

RESUMEN

Stroke results in local neural disconnection and brain-wide neuronal network dysfunction leading to neurological deficits. Beyond the hyper-acute phase of ischaemic stroke, there is no clinically-approved pharmacological treatment that alleviates sensorimotor impairments. Functional recovery after stroke involves the formation of new or alternative neuronal circuits including existing neural connections. The type-5 metabotropic glutamate receptor (mGluR5) has been shown to modulate brain plasticity and function and is a therapeutic target in neurological diseases outside of stroke. We investigated whether mGluR5 influences functional recovery and network reorganization rodent models of focal ischaemia. Using multiple behavioural tests, we observed that treatment with negative allosteric modulators (NAMs) of mGluR5 (MTEP, fenobam and AFQ056) for 12 days, starting 2 or 10 days after stroke, restored lost sensorimotor functions, without diminishing infarct size. Recovery was evident within hours after initiation of treatment and progressed over the subsequent 12 days. Recovery was prevented by activation of mGluR5 with the positive allosteric modulator VU0360172 and accelerated in mGluR5 knock-out mice compared with wild-type mice. After stroke, multisensory stimulation by enriched environments enhanced recovery, a result prevented by VU0360172, implying a role of mGluR5 in enriched environment-mediated recovery. Additionally, MTEP treatment in conjunction with enriched environment housing provided an additive recovery enhancement compared to either MTEP or enriched environment alone. Using optical intrinsic signal imaging, we observed brain-wide disruptions in resting-state functional connectivity after stroke that were prevented by mGluR5 inhibition in distinct areas of contralesional sensorimotor and bilateral visual cortices. The levels of mGluR5 protein in mice and in tissue samples of stroke patients were unchanged after stroke. We conclude that neuronal circuitry subserving sensorimotor function after stroke is depressed by a mGluR5-dependent maladaptive plasticity mechanism that can be restored by mGluR5 inhibition. Post-acute stroke treatment with mGluR5 NAMs combined with rehabilitative training may represent a novel post-acute stroke therapy.


Asunto(s)
Isquemia Encefálica , Enfermedades del Sistema Nervioso , Accidente Cerebrovascular , Animales , Humanos , Ratones , Encéfalo/metabolismo , Isquemia Encefálica/tratamiento farmacológico , Ratones Noqueados , Enfermedades del Sistema Nervioso/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo
2.
Am J Physiol Renal Physiol ; 327(1): F113-F127, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38660712

RESUMEN

The kidneys maintain fluid-electrolyte balance and excrete waste in the presence of constant fluctuations in plasma volume and systemic blood pressure. The kidneys perform these functions to control capillary perfusion and glomerular filtration by modulating the mechanisms of autoregulation. An effect of these modulations are spontaneous, natural fluctuations in glomerular perfusion. Numerous other mechanisms can lead to fluctuations in perfusion and flow. The ability to monitor these spontaneous physiological fluctuations in vivo could facilitate the early detection of kidney disease. The goal of this work was to investigate the use of resting-state magnetic resonance imaging (rsMRI) to detect spontaneous physiological fluctuations in the kidney. We performed rsMRI of rat kidneys in vivo over 10 min, applying motion correction to resolve time series in each voxel. We observed spatially variable, spontaneous fluctuations in rsMRI signal between 0 and 0.3 Hz, in frequency bands associated with autoregulatory mechanisms. We further applied rsMRI to investigate changes in these fluctuations in a rat model of diabetic nephropathy. Spectral analysis was performed on time series of rsMRI signals in the kidney cortex and medulla. The power from spectra in specific frequency bands from the cortex correlated with severity of glomerular pathology caused by diabetic nephropathy. Finally, we investigated the feasibility of using rsMRI of the human kidney in two participants, observing the presence of similar, spatially variable fluctuations. This approach may enable a range of preclinical and clinical investigations of kidney function and facilitate the development of new therapies to improve outcomes in patients with kidney disease.NEW & NOTEWORTHY This work demonstrates the development and use of resting-state MRI to detect low-frequency, spontaneous physiological fluctuations in the kidney consistent with previously observed fluctuations in perfusion and potentially due to autoregulatory function. These fluctuations are detectable in rat and human kidneys, and the power of these fluctuations is affected by diabetic nephropathy in rats.


Asunto(s)
Nefropatías Diabéticas , Riñón , Imagen por Resonancia Magnética , Ratas Sprague-Dawley , Animales , Nefropatías Diabéticas/fisiopatología , Nefropatías Diabéticas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Masculino , Riñón/fisiopatología , Riñón/diagnóstico por imagen , Ratas , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Experimental/diagnóstico por imagen , Circulación Renal , Humanos , Homeostasis/fisiología
3.
Neuroimage ; 257: 119287, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35594811

RESUMEN

Normal aging is associated with a variety of neurologic changes including declines in cognition, memory, and motor activity. These declines correlate with neuronal changes in synaptic structure and function. Degradation of brain network activity and connectivity represents a likely mediator of age-related functional deterioration resulting from these neuronal changes. Human studies have demonstrated both general decreases in spontaneous cortical activity and disruption of cortical networks with aging. Current techniques used to study cerebral network activity are hampered either by limited spatial resolution (e.g. electroencephalography, EEG) or limited temporal resolution (e.g., functional magnetic resonance imaging, fMRI). Here we utilize mesoscale imaging of neuronal activity in Thy1-GCaMP6f mice to characterize neuronal network changes in aging with high spatial resolution across a wide frequency range. We show that while evoked activity is unchanged with aging, spontaneous neuronal activity decreases across a wide frequency range (0.01-4 Hz) involving all regions of the cortex. In contrast to this global reduction in cortical power, we found that aging is associated with functional connectivity (FC) deterioration of select networks including somatomotor, cingulate, and retrosplenial nodes. These changes are corroborated by reductions in homotopic FC and node degree within somatomotor and visual cortices. Finally, we found that whole-cortex delta power and delta band node degree correlate with exploratory activity in young but not aged animals. Together these data suggest that aging is associated with global declines in spontaneous cortical activity and focal deterioration of network connectivity, and that these reductions may be associated with age-related behavioral declines.


Asunto(s)
Envejecimiento , Electroencefalografía , Anciano , Envejecimiento/fisiología , Animales , Mapeo Encefálico , Cognición , Humanos , Imagen por Resonancia Magnética/métodos , Ratones
4.
Proc Natl Acad Sci U S A ; 116(11): 5102-5107, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30792350

RESUMEN

Circadian dysfunction is a common attribute of many neurodegenerative diseases, most of which are associated with neuroinflammation. Circadian rhythm dysfunction has been associated with inflammation in the periphery, but the role of the core clock in neuroinflammation remains poorly understood. Here we demonstrate that Rev-erbα, a nuclear receptor and circadian clock component, is a mediator of microglial activation and neuroinflammation. We observed time-of-day oscillation in microglial immunoreactivity in the hippocampus, which was disrupted in Rev-erbα-/- mice. Rev-erbα deletion caused spontaneous microglial activation in the hippocampus and increased expression of proinflammatory transcripts, as well as secondary astrogliosis. Transcriptomic analysis of hippocampus from Rev-erbα-/- mice revealed a predominant inflammatory phenotype and suggested dysregulated NF-κB signaling. Primary Rev-erbα-/- microglia exhibited proinflammatory phenotypes and increased basal NF-κB activation. Chromatin immunoprecipitation revealed that Rev-erbα physically interacts with the promoter regions of several NF-κB-related genes in primary microglia. Loss of Rev-erbα in primary astrocytes had no effect on basal activation but did potentiate the inflammatory response to lipopolysaccharide (LPS). In vivo, Rev-erbα-/- mice exhibited enhanced hippocampal neuroinflammatory responses to peripheral LPS injection, while pharmacologic activation of Rev-erbs with the small molecule agonist SR9009 suppressed LPS-induced hippocampal neuroinflammation. Rev-erbα deletion influenced neuronal health, as conditioned media from Rev-erbα-deficient primary glial cultures exacerbated oxidative damage in cultured neurons. Rev-erbα-/- mice also exhibited significantly altered cortical resting-state functional connectivity, similar to that observed in neurodegenerative models. Our results reveal Rev-erbα as a pharmacologically accessible link between the circadian clock and neuroinflammation.


Asunto(s)
Relojes Circadianos , Inflamación/metabolismo , Inflamación/patología , Neuronas/metabolismo , Neuronas/patología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Muerte Celular , Eliminación de Gen , Gliosis/patología , Hipocampo/patología , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Microglía/patología , FN-kappa B/metabolismo , Red Nerviosa/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/deficiencia , Transducción de Señal
5.
Cereb Cortex ; 30(5): 3352-3369, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32043145

RESUMEN

Electrophysiological recordings have established that GABAergic interneurons regulate excitability, plasticity, and computational function within local neural circuits. Importantly, GABAergic inhibition is focally disrupted around sites of brain injury. However, it remains unclear whether focal imbalances in inhibition/excitation lead to widespread changes in brain activity. Here, we test the hypothesis that focal perturbations in excitability disrupt large-scale brain network dynamics. We used viral chemogenetics in mice to reversibly manipulate parvalbumin interneuron (PV-IN) activity levels in whisker barrel somatosensory cortex. We then assessed how this imbalance affects cortical network activity in awake mice using wide-field optical neuroimaging of pyramidal neuron GCaMP dynamics as well as local field potential recordings. We report 1) that local changes in excitability can cause remote, network-wide effects, 2) that these effects propagate differentially through intra- and interhemispheric connections, and 3) that chemogenetic constructs can induce plasticity in cortical excitability and functional connectivity. These findings may help to explain how focal activity changes following injury lead to widespread network dysfunction.


Asunto(s)
Excitabilidad Cortical/fisiología , Interneuronas/fisiología , Vías Nerviosas/fisiopatología , Células Piramidales/fisiología , Corteza Somatosensorial/fisiopatología , Animales , Electrocorticografía , Interneuronas/metabolismo , Ratones , Inhibición Neural/fisiología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología , Imagen Óptica , Parvalbúminas , Células Piramidales/metabolismo , Procesamiento de Señales Asistido por Computador , Corteza Somatosensorial/diagnóstico por imagen , Corteza Somatosensorial/metabolismo , Vibrisas/inervación
6.
J Ultrasound Med ; 40(8): 1693-1704, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33155690

RESUMEN

Musculoskeletal ultrasound has grown substantially in use over the past several years as an indispensable companion to magnetic resonance imaging and other imaging modalities. This article reviews 10 integral applications of musculoskeletal ultrasound as a problem-solving tool with correlative case examples. These applications include the following: (1) accessibility and portability, (2) targeted imaging, (3) dynamic imaging, (4) contralateral comparison, (5) Doppler imaging, (6) increased spatial resolution, (7) solid versus cystic comparison, (8) posttraumatic imaging, (9) postsurgical imaging, and (10) treatment delivery and optimization. The review will help the radiologist recognize the complementary uses of musculoskeletal ultrasound with radiography, computed tomography, and magnetic resonance imaging.


Asunto(s)
Enfermedades Musculoesqueléticas , Sistema Musculoesquelético , Humanos , Imagen por Resonancia Magnética , Enfermedades Musculoesqueléticas/diagnóstico por imagen , Sistema Musculoesquelético/diagnóstico por imagen , Tomografía Computarizada por Rayos X , Ultrasonografía , Ultrasonografía Doppler
7.
Neuroimage ; 215: 116810, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32276058

RESUMEN

Spontaneous infra-slow brain activity (ISA) exhibits a high degree of temporal synchrony, or correlation, between distant brain regions. The spatial organization of ISA synchrony is not explained by anatomical connections alone, suggesting that active neural processes coordinate spontaneous activity. Inhibitory interneurons (IINs) form electrically coupled connections via the gap junction protein connexin 36 (Cx36) and networks of interconnected IINs are known to influence neural synchrony over short distances. However, the role of electrically coupled IIN networks in regulating spontaneous correlation over the entire brain is unknown. In this study, we performed OIS imaging on Cx36-/- mice to examine the role of this gap junction in ISA correlation across the entire cortex. We show that Cx36 deletion increased long-distance intra-hemispheric anti-correlation and inter-hemispheric correlation in spontaneous ISA. This suggests that electrically coupled IIN networks modulate ISA synchrony over long cortical distances.


Asunto(s)
Corteza Cerebral/metabolismo , Conexinas/deficiencia , Interneuronas/metabolismo , Red Nerviosa/metabolismo , Inhibición Neural/fisiología , Animales , Corteza Cerebral/citología , Conexinas/genética , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/citología , Distribución Aleatoria , Proteína delta-6 de Union Comunicante
8.
Proc Natl Acad Sci U S A ; 114(46): E9952-E9961, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087327

RESUMEN

Decades of work in experimental animals has established the importance of visual experience during critical periods for the development of normal sensory-evoked responses in the visual cortex. However, much less is known concerning the impact of early visual experience on the systems-level organization of spontaneous activity. Human resting-state fMRI has revealed that infraslow fluctuations in spontaneous activity are organized into stereotyped spatiotemporal patterns across the entire brain. Furthermore, the organization of spontaneous infraslow activity (ISA) is plastic in that it can be modulated by learning and experience, suggesting heightened sensitivity to change during critical periods. Here we used wide-field optical intrinsic signal imaging in mice to examine whole-cortex spontaneous ISA patterns. Using monocular or binocular visual deprivation, we examined the effects of critical period visual experience on the development of ISA correlation and latency patterns within and across cortical resting-state networks. Visual modification with monocular lid suturing reduced correlation between left and right cortices (homotopic correlation) within the visual network, but had little effect on internetwork correlation. In contrast, visual deprivation with binocular lid suturing resulted in increased visual homotopic correlation and increased anti-correlation between the visual network and several extravisual networks, suggesting cross-modal plasticity. These network-level changes were markedly attenuated in mice with genetic deletion of Arc, a gene known to be critical for activity-dependent synaptic plasticity. Taken together, our results suggest that critical period visual experience induces global changes in spontaneous ISA relationships, both within the visual network and across networks, through an Arc-dependent mechanism.


Asunto(s)
Proteínas del Citoesqueleto/fisiología , Aprendizaje , Acontecimientos que Cambian la Vida , Proteínas del Tejido Nervioso/fisiología , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Corteza Visual/fisiología , Animales , Encéfalo/fisiología , Mapeo Encefálico , Corteza Cerebral/fisiología , Proteínas del Citoesqueleto/genética , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Genotipo , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Proteínas del Tejido Nervioso/genética , Privación Sensorial/fisiología
9.
Cereb Cortex ; 28(1): 370-386, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29136125

RESUMEN

Brain connectomics has expanded from histological assessment of axonal projection connectivity (APC) to encompass resting state functional connectivity (RS-FC). RS-FC analyses are efficient for whole-brain mapping, but attempts to explain aspects of RS-FC (e.g., interhemispheric RS-FC) based on APC have been only partially successful. Neuroimaging with hemoglobin alone lacks specificity for determining how activity in a population of cells contributes to RS-FC. Wide-field mapping of optogenetically defined connectivity could provide insights into the brain's structure-function relationship. We combined optogenetics with optical intrinsic signal imaging to create an efficient, optogenetic effective connectivity (Opto-EC) mapping assay. We examined EC patterns of excitatory neurons in awake, Thy1-ChR2 transgenic mice. These Thy1-based EC (Thy1-EC) patterns were evaluated against RS-FC over the cortex. Compared to RS-FC, Thy1-EC exhibited increased spatial specificity, reduced interhemispheric connectivity in regions with strong RS-FC, and appreciable connection strength asymmetry. Comparing the topography of Thy1-EC and RS-FC patterns to maps of APC revealed that Thy1-EC more closely resembled APC than did RS-FC. The more general method of Opto-EC mapping with hemoglobin can be determined for 100 sites in single animals in under an hour, and is amenable to other neuroimaging modalities. Opto-EC mapping represents a powerful strategy for examining evolving connectivity-related circuit plasticity.


Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Hemodinámica , Neuronas/fisiología , Imagen Óptica/métodos , Optogenética , Animales , Encéfalo/citología , Encéfalo/diagnóstico por imagen , Circulación Cerebrovascular , Electroencefalografía , Hemoglobinas/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Neuronas/citología , Descanso
10.
Neurobiol Dis ; 112: 91-105, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29367009

RESUMEN

In the brain, focal ischemia results in a local region of cell death and disruption of both local and remote functional neuronal networks. Tissue reorganization following stroke can be limited by factors such as extracellular matrix (ECM) molecules that prevent neuronal growth and synaptic plasticity. The brain's ECM plays a crucial role in network formation, development, and regeneration of the central nervous system. Further, the ECM is essential for proper white matter tract development and for the formation of structures called perineuronal nets (PNNs). PNNs mainly surround parvalbumin/GABA inhibitory interneurons, of importance for processing sensory information. Previous studies have shown that downregulating PNNs after stroke reduces the neurite-inhibitory environment, reactivates plasticity, and promotes functional recovery. Resting-state functional connectivity (RS-FC) within and across hemispheres has been shown to correlate with behavioral recovery after stroke. However, the relationship between PNNs and RS-FC has not been examined. Here we studied a quadruple knock-out mouse (Q4) that lacks four ECM components: brevican, neurocan, tenascin-C and tenascin-R. We applied functional connectivity optical intrinsic signal (fcOIS) imaging in Q4 mice and wild-type (129S1 mice) before and 14 days after photothrombotic stroke (PT) to understand how the lack of crucial ECM components affects neuronal networks and functional recovery after stroke. Limb-placement ability was evaluated at 2, 7 and 14 days of recovery through the paw-placement test. Q4 mice exhibited significantly impaired homotopic RS-FC compared to wild-type mice, especially in the sensory and parietal regions. Changes in RS-FC were significantly correlated with the number of interhemispheric callosal crossings in those same regions. PT caused unilateral damage to the sensorimotor cortex and deficits of tactile-proprioceptive placing ability in contralesional fore- and hindlimbs, but the two experimental groups did not present significant differences in infarct size. Two weeks after PT, a general down-scaling of regional RS-FC as well as the number of regional functional connections was visible for all cortical regions and most notable in the somatosensory areas of both Q4 and wild-type mice. Q4 mice exhibited higher intrahemispheric RS-FC in contralesional sensory and motor cortices compared to control mice. We propose that the lack of growth inhibiting ECM components in the Q4 mice potentially worsen behavioral outcome in the early phase after stroke, but subsequently facilitates modulation of contralesional RS-FC which is relevant for recovery of sensory motor function. We conclude that Q4 mice represent a valuable model to study how the elimination of ECM genes compromises neuronal function and plasticity mechanisms after stroke.


Asunto(s)
Matriz Extracelular/fisiología , Red Nerviosa/fisiología , Imagen Óptica/métodos , Descanso/fisiología , Corteza Sensoriomotora/fisiología , Accidente Cerebrovascular/fisiopatología , Animales , Femenino , Ratones , Ratones de la Cepa 129 , Ratones Noqueados
11.
AJR Am J Roentgenol ; 210(1): 18-23, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28952810

RESUMEN

OBJECTIVE: Differentiation of radiation necrosis (RN) from recurrent tumor (RT) in treated patients with glioblastoma remains a diagnostic challenge. The purpose of this study is to evaluate the diagnostic performance of multiparametric MRI in distinguishing RN from RT in patients with glioblastoma, with the use of a combination of MR perfusion and diffusion parameters. MATERIALS AND METHODS: Patients with glioblastoma who had a new enhancing mass develop after completing standard treatment were retrospectively evaluated. Apparent diffusion coefficient (ADC), volume transfer constant (Ktrans), and relative cerebral blood volume (rCBV) values were calculated from the MR images on which the enhancing lesions first appeared. Repeated measure of analysis, logistic regression, and ROC analysis were performed. RESULTS: Of a total of 70 patients evaluated, 46 (34 with RT and 12 with RN) met our inclusion criteria. Patients with RT had significantly higher mean rCBV (p < 0.001) and Ktrans (p = 0.006) values and lower ADC values (p = 0.004), compared with patients with RN. The overall diagnostic accuracy was 85.8% for rCBV, 75.5% for Ktrans, and 71.3% for ADC values. The logistic regression model showed a significant contribution of rCBV (p = 0.024) and Ktrans (p = 0.040) as independent imaging classifiers for differentiation of RT from RN. Combined use of rCBV and Ktrans at threshold values of 2.2 and 0.08 min-1, respectively, improved the overall diagnostic accuracy to 92.8%. CONCLUSION: In patients with treated glioblastoma, rCBV outperforms ADC and Ktrans as a single imaging classifier to predict recurrent tumor versus radiation necrosis; however, the combination of rCBV and Ktrans may be used to improve overall diagnostic accuracy.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Glioblastoma/diagnóstico por imagen , Imagen por Resonancia Magnética , Recurrencia Local de Neoplasia/diagnóstico , Traumatismos por Radiación/diagnóstico , Adulto , Anciano , Neoplasias Encefálicas/radioterapia , Circulación Cerebrovascular , Diagnóstico Diferencial , Femenino , Glioblastoma/radioterapia , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Curva ROC , Estudios Retrospectivos
12.
Skeletal Radiol ; 47(8): 1043-1050, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29445932

RESUMEN

OBJECTIVE: Fibrodysplasia ossificans progressiva is a rare genetic disorder characterized by congenital skeletal deformities and soft tissue masses that progress to heterotopic ossification. Deformities of the great toes are distinctive, and heterotopic ossification in the soft tissues follows an expected anatomic and temporal pattern. In addition to heterotopic ossification, osteochondromata, middle ear ossification, demyelination, lymphedema, and venous thrombosis are characteristic. Awareness of this constellation of findings is important to early diagnosis and surveillance. CONCLUSIONS: Recognition of the imaging manifestations of fibrodysplasia ossificans progressiva is imperative to early diagnosis in order to appropriately direct patient care and preclude unnecessary biopsies or surgical procedures.


Asunto(s)
Miositis Osificante/diagnóstico por imagen , Adolescente , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/etiología , Niño , Preescolar , Diagnóstico Precoz , Femenino , Humanos , Lactante , Miositis Osificante/complicaciones , Miositis Osificante/genética , Miositis Osificante/terapia , Osificación Heterotópica/diagnóstico por imagen , Osificación Heterotópica/etiología , Osteocondroma/diagnóstico por imagen , Osteocondroma/etiología
13.
Biol Reprod ; 96(1): 211-220, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28395333

RESUMEN

In ovine pregnancy, uterine space restriction (USR) resulting from decreased space for placental attachment caused intrauterine growth restriction and impaired nephrogenesis. The fetal kidney renin-angiotensin system (RAS) is involved in nephrogenesis, fluid balance, and iron deposition. Angiotensin II exerts its effects via multiple receptors: angiotensin II 1-8 receptor type 1 (AT 1 R) and type 2 (AT 2 R), and angiotensin II 1-7 Mas receptor (MASR). Objective: : To test the hypothesis that ovine USR is associated with dysregulation of the fetal renal RAS. Methods: : Multiparous pregnant ewes (n = 32), 16 with surgical bifurcated disconnection of one uterine horn to further reduce placental attachment sites, were studied. USR (n = 31) ovine fetuses were compared to nonspace restricted (NSR) singleton controls (n = 22) on gestational day (GD) 120 or GD130, term GD147. Fetal plasma was collected to evaluate plasma renin activity and iron indices. Fetal kidney AT 1 R, AT 2 R, and MASR proteins were assessed by Western immunoblotting and immunohistochemistry. Results: : AT 1 R, AT 2 R, and MASR protein expression was higher in USR at GD130 than aged-matched NSR and USR at GD120, ( P < 0.05 all). AT 1 R and AT 2 R localization was homogenous throughout proximal and distal tubules in both USR and NSR at both gestational dates. MASR localization was punctate throughout renal cortical structures including tubules and glomeruli in both USR and NSR, shifted to intranuclear at GD130. Plasma renin activity was inversely related to plasma osmolarity ( P < 0.02) and was downregulated in USR at GD130 ( P < 0.05). Conclusions: : By late gestation, USR upregulated renal angiotensin receptor expression, an effect with potential functional implications.


Asunto(s)
Retardo del Crecimiento Fetal/metabolismo , Corteza Renal/metabolismo , Receptores de Angiotensina/metabolismo , Sistema Renina-Angiotensina , Animales , Creatinina/sangre , Modelos Animales de Enfermedad , Femenino , Hierro/metabolismo , Concentración Osmolar , Embarazo , Renina/sangre , Ovinos
14.
Proc Natl Acad Sci U S A ; 111(1): 21-6, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24367107

RESUMEN

The increasing use of mouse models for human brain disease studies presents an emerging need for a new functional imaging modality. Using optical excitation and acoustic detection, we developed a functional connectivity photoacoustic tomography system, which allows noninvasive imaging of resting-state functional connectivity in the mouse brain, with a large field of view and a high spatial resolution. Bilateral correlations were observed in eight functional regions, including the olfactory bulb, limbic, parietal, somatosensory, retrosplenial, visual, motor, and temporal regions, as well as in several subregions. The borders and locations of these regions agreed well with the Paxinos mouse brain atlas. By subjecting the mouse to alternating hyperoxic and hypoxic conditions, strong and weak functional connectivities were observed, respectively. In addition to connectivity images, vascular images were simultaneously acquired. These studies show that functional connectivity photoacoustic tomography is a promising, noninvasive technique for functional imaging of the mouse brain.


Asunto(s)
Mapeo Encefálico/métodos , Técnicas Fotoacústicas/métodos , Algoritmos , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Electrodos , Diseño de Equipo , Hemodinámica , Hemoglobinas/metabolismo , Hiperoxia , Hipoxia , Procesamiento de Imagen Asistido por Computador/métodos , Rayos Láser , Masculino , Ratones , Vías Nerviosas , Distribución Normal
16.
J Neurosci ; 34(21): 7281-92, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24849360

RESUMEN

Apolipoprotein E (apoE) is the strongest known genetic risk factor for late onset Alzheimer's disease (AD). It influences amyloid-ß (Aß) clearance and aggregation, which likely contributes in large part to its role in AD pathogenesis. We recently found that HJ6.3, a monoclonal antibody against apoE, significantly reduced Aß plaque load when given to APPswe/PS1ΔE9 (APP/PS1) mice starting before the onset of plaque deposition. To determine whether the anti-apoE antibody HJ6.3 affects Aß plaques, neuronal network function, and behavior in APP/PS1 mice after plaque onset, we administered HJ6.3 (10 mg/kg/week) or PBS intraperitoneally to 7-month-old APP/PS1 mice for 21 weeks. HJ6.3 mildly improved spatial learning performance in the water maze, restored resting-state functional connectivity, and modestly reduced brain Aß plaque load. There was no effect of HJ6.3 on total plasma cholesterol or cerebral amyloid angiopathy. To investigate the underlying mechanisms of anti-apoE immunotherapy, HJ6.3 was applied to the brain cortical surface and amyloid deposition was followed over 2 weeks using in vivo imaging. Acute exposure to HJ6.3 affected the course of amyloid deposition in that it prevented the formation of new amyloid deposits, limited their growth, and was associated with occasional clearance of plaques, a process likely associated with direct binding to amyloid aggregates. Topical application of HJ6.3 for only 14 d also decreased the density of amyloid plaques assessed postmortem. Collectively, these studies suggest that anti-apoE antibodies have therapeutic potential when given before or after the onset of Aß pathology.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Anticuerpos/uso terapéutico , Apolipoproteínas E/inmunología , Encéfalo/metabolismo , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/efectos de los fármacos , Precursor de Proteína beta-Amiloide/genética , Amiloidosis/tratamiento farmacológico , Amiloidosis/metabolismo , Amiloidosis/patología , Animales , Encéfalo/efectos de los fármacos , Colesterol/sangre , Modelos Animales de Enfermedad , Femenino , Hemorragia/tratamiento farmacológico , Hemorragia/etiología , Cojera Animal/tratamiento farmacológico , Cojera Animal/etiología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Mutación/genética , Presenilina-1/genética
17.
Neuroradiology ; 57(7): 697-703, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25845813

RESUMEN

INTRODUCTION: Solitary brain metastasis (MET) and glioblastoma multiforme (GBM) can appear similar on conventional MRI. The purpose of this study was to identify magnetic resonance (MR) perfusion and diffusion-weighted biomarkers that can differentiate MET from GBM. METHODS: In this retrospective study, patients were included if they met the following criteria: underwent resection of a solitary enhancing brain tumor and had preoperative 3.0 T MRI encompassing diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) perfusion. Using co-registered images, voxel-based fractional anisotropy (FA), mean diffusivity (MD), K(trans), and relative cerebral blood volume (rCBV) values were obtained in the enhancing tumor and non-enhancing peritumoral T2 hyperintense region (NET2). Data were analyzed by logistic regression and analysis of variance. Receiver operating characteristic (ROC) analysis was performed to determine the optimal parameter/s and threshold for predicting of GBM vs. MET. RESULTS: Twenty-three patients (14 M, age 32-78 years old) met our inclusion criteria. Pathology revealed 13 GBMs and 10 METs. In the enhancing tumor, rCBV, K(trans), and FA were higher in GBM, whereas MD was lower, neither without statistical significance. In the NET2, rCBV was significantly higher (p = 0.05) in GBM, but MD was significantly lower (p < 0.01) in GBM. FA and K(trans) were higher in GBM, though not reaching significance. The best discriminative power was obtained in NET2 from a combination of rCBV, FA, and MD, resulting in an area under the curve (AUC) of 0.98. CONCLUSION: The combination of MR diffusion and perfusion matrices in NET2 can help differentiate GBM over solitary MET with diagnostic accuracy of 98%.


Asunto(s)
Neoplasias Encefálicas/patología , Neoplasias Encefálicas/secundario , Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Glioblastoma/diagnóstico , Imagen Multimodal , Adulto , Anciano , Anisotropía , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Curva ROC , Estudios Retrospectivos
18.
Neuroimage ; 99: 388-401, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24862071

RESUMEN

Recent human neuroimaging studies indicate that spontaneous fluctuations in neural activity, as measured by functional connectivity magnetic resonance imaging (fcMRI), are significantly affected following stroke. Disrupted functional connectivity is associated with behavioral deficits and has been linked to long-term recovery potential. FcMRI studies of stroke in rats have generally produced similar findings, although subacute cortical reorganization following focal ischemia appears to be more rapid than in humans. Similar studies in mice have not been published, most likely because fMRI in the small mouse brain is technically challenging. Extending functional connectivity methods to mouse models of stroke could provide a valuable tool for understanding the link between molecular mechanisms of stroke repair and human fcMRI findings at the system level. We applied functional connectivity optical intrinsic signal imaging (fcOIS) to mice before and 72 h after transient middle cerebral artery occlusion (tMCAO) to examine how graded ischemic injury affects the relationship between functional connectivity and infarct volume, stimulus-induced response, and behavior. Regional changes in functional connectivity within the MCA territory were largely proportional to infarct volume. However, subcortical damage affected functional connectivity in the somatosensory cortex as much as larger infarcts of cortex and subcortex. The extent of injury correlated with cortical activations following electrical stimulation of the affected forelimb and with functional connectivity in the somatosensory cortex. Regional homotopic functional connectivity in motor cortex correlated with behavioral deficits measured using an adhesive patch removal test. Spontaneous hemodynamic activity within the infarct exhibited altered temporal and spectral features in comparison to intact tissue; failing to account for these regional differences significantly affected apparent post-stroke functional connectivity measures. Thus, several results were strongly dependent on how the resting-state data were processed. Specifically, global signal regression alone resulted in apparently distorted functional connectivity measures in the intact hemisphere. These distortions were corrected by regressing out multiple sources of variance, as performed in human fcMRI. We conclude that fcOIS provides a sensitive imaging modality in the murine stroke model; however, it is necessary to properly account for altered hemodynamics in injured brain to obtain accurate measures of functional connectivity.


Asunto(s)
Isquemia Encefálica/patología , Vías Nerviosas/patología , Imagen Óptica/métodos , Accidente Cerebrovascular/patología , Animales , Conducta Animal , Infarto Cerebral/patología , Estimulación Eléctrica , Miembro Anterior/inervación , Lateralidad Funcional/fisiología , Procesamiento de Imagen Asistido por Computador , Masculino , Ratones , Arteria Cerebral Media/patología
19.
Macromol Rapid Commun ; 35(17): 1503-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25042883

RESUMEN

Solvent vapor annealing (SVA) is originally developed to attain equilibrium nanostructures from microphase-separated block polymer thin films. Interestingly, by carefully choosing a solvent vapor that can selectively mobilize the amorphous chains of a semicrystalline polymer while preserving the integrity of its crystalline structure, this study demonstrates that the SVA method can also be utilized to introduce hierarchical structures onto semicrystalline polymer-based materials. This study on electrospun poly(ε-caprolactone) (PCL) fibers clearly shows that acetone, a poor solvent for PCL, can effectively delocalize the amorphous chains and redeposit them onto the pre-existing crystal edges, giving rise to secondary nanostructures inscribed onto the PCL fibers. In the past decade, various fiber fabrication methods and numerous fiber products are reported. The easy one-step approach reported here provides new insight into the design and fabrication of structurally hierarchical polymeric materials.


Asunto(s)
Gases/química , Nanoestructuras/química , Solventes/química , Rastreo Diferencial de Calorimetría , Nanoestructuras/ultraestructura , Poliésteres/química , Temperatura de Transición
20.
Macromol Rapid Commun ; 35(7): 715-20, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24615764

RESUMEN

This paper reports the use of polyhedral oligomeric silsesquioxane (POSS)-based copolymers to stabilize the core/shell interface for the facile fabrication of electrospun core/shell fibers. For the poly[(propylmethacryl-heptaisobutyl-polyhedral oligomeric silsesquioxane)-co-(methyl methacrylate)] (POSS-MMA)/poly(ε-caprolactone) (PCL) system, the bicontinuity of hybrid core/shell fibers can be tuned by controlling the phase separation of POSS-MMA/PCL in electrospinning solutions and therefore the size of PCL-in-POSS-MMA emulsion droplets. Our results demonstrate the enhanced encapsulation capacity of POSS-MMA copolymers as shell materials. Taking advantage of the rapid advancement of POSS-based copolymer synthesis, this study can potentially be generalized to guide the fabrication of various other POSS-based core/shell nano-/microstructures by using single-nozzle electrospinning or coaxial electrospinning.


Asunto(s)
Compuestos de Organosilicio/química , Polímeros/química , Ensayo de Materiales , Tamaño de la Partícula , Polímeros/síntesis química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA