Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 29(4): 39, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29564650

RESUMEN

The article "Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry", written by Natalia Davidenko, Carlos F. Schuster, Daniel V. Bax, Richard W. Farndale, Samir Hamaia, Serena M. Best and Ruth E. Cameron, was originally published Online First without open access. After publication in volume 27, issue 10, page 148 it was noticed that the copyright was wrong in the PDF version of the article. The copyright of the article should read as "© The Author(s) 2016". The Open Access license terms were also missing.

2.
J Mater Sci Mater Med ; 29(12): 178, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30506173

RESUMEN

PDMS is widely used for prosthetic device manufacture. Conventional ion implantation is not a suitable treatment to enhance the biocompatibility of poly dimethyl siloxane (PDMS) due to its propensity to generate a brittle silicon oxide surface layer which cracks and delaminates. To overcome this limitation, we have developed new plasma based processes to balance the etching of carbon with implantation of carbon from the plasma source. When this carbon was implanted from the plasma phase it resulted in a surface that was structurally similar and intermixed with the underlying PDMS material and not susceptible to delamination. The enrichment in surface carbon allowed the formation of carbon based radicals that are not present in conventional plasma ion immersion implantation (PIII) treated PDMS. This imparts the PDMS surfaces with covalent protein binding capacity that is not observed on PIII treated PDMS. The change in surface energy preserved the function of bound biomolecules and enhanced the attachment of MG63 osteosarcoma cells compared to the native surface. The attached cells, an osteoblast interaction model, showed increased spreading on the treated over untreated surfaces. The carbon-dependency for these beneficial covalent protein and cell linkage properties was tested by incorporating carbon from a different source. To this end, a second surface was produced where carbon etching was balanced against implantation from a thin carbon-based polymer coating. This had similar protein and cell-binding properties to the surfaces generated with carbon inclusion in the plasma phase, thus highlighting the importance of balancing carbon etching and deposition. Additionally, the two effects of protein linkage and bioactivity could be combined where the cell response was further enhanced by covalently tethering a biomolecule coating, as exemplified here with the cell adhesive protein tropoelastin. Providing a balanced carbon source in the plasma phase is applicable to prosthetic device fabrication as illustrated using a 3-dimensional PDMS balloon prosthesis for spinal implant applications. Consequently, this study lays the groundwork for effective treatments of PDMS to selectively recruit cells to implantable PDMS fabricated biodevices.


Asunto(s)
Adhesión Celular , Materiales Biocompatibles Revestidos/química , Dimetilpolisiloxanos/química , Proteínas Inmovilizadas , Línea Celular Tumoral , Humanos , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Osteosarcoma , Prótesis e Implantes , Unión Proteica , Propiedades de Superficie
3.
J Mater Sci Mater Med ; 27(10): 148, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27582068

RESUMEN

Studies of cell attachment to collagen-based materials often ignore details of the binding mechanisms-be they integrin-mediated or non-specific. In this work, we have used collagen and gelatin-based substrates with different dimensional characteristics (monolayers, thin films and porous scaffolds) in order to establish the influence of composition, crosslinking (using carbodiimide) treatment and 2D or 3D architecture on integrin-mediated cell adhesion. By varying receptor expression, using cells with collagen-binding integrins (HT1080 and C2C12 L3 cell lines, expressing α2ß1, and Rugli expressing α1ß1) and a parent cell line C2C12 with gelatin-binding receptors (αvß3 and α5ß1), the nature of integrin binding sites was studied in order to explain the bioactivity of different protein formulations. We have shown that alteration of the chemical identity, conformation and availability of free binding motifs (GxOGER and RGD), resulting from addition of gelatin to collagen and crosslinking, have a profound effect on the ability of cells to adhere to these formulations. Carbodiimide crosslinking ablates integrin-dependent cell activity on both two-dimensional and three-dimensional architectures while the three-dimensional scaffold structure also leads to a high level of non-specific interactions remaining on three-dimensional samples even after a rigorous washing regime. This phenomenon, promoted by crosslinking, and attributed to cell entrapment, should be considered in any assessment of the biological activity of three-dimensional substrates. Spreading data confirm the importance of integrin-mediated cell engagement for further cell activity on collagen-based compositions. In this work, we provide a simple, but effective, means of deconvoluting the effects of chemistry and dimensional characteristics of a substrate, on the cell activity of protein-derived materials, which should assist in tailoring their biological properties for specific tissue engineering applications.


Asunto(s)
Colágeno/química , Gelatina/química , Tendón Calcáneo/metabolismo , Secuencias de Aminoácidos , Animales , Carbodiimidas/química , Bovinos , Adhesión Celular , Línea Celular , Línea Celular Tumoral , Materiales Biocompatibles Revestidos , Reactivos de Enlaces Cruzados/química , Matriz Extracelular/metabolismo , Humanos , Integrinas/química , Ligandos , Ensayo de Materiales , Ratones , Unión Proteica , Propiedades de Superficie , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
4.
J Mater Sci Mater Med ; 27(1): 14, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26676860

RESUMEN

Short wavelength (λ = 254 nm) UV irradiation was evaluated over a range of intensities (0.06 to 0.96 J/cm(2)) as a means of cross-linking collagen- and gelatin-based scaffolds, to tailor their material characteristics whilst retaining biological functionality. Zero-link carbodiimide treatments are commonly applied to collagen-based materials, forming cross-links from carboxylate anions (for example the acidic E of GFOGER) that are an essential part of integrin binding sites on collagen. Cross-linking these amino acids therefore disrupts the bioactivity of collagen. In contrast, UV irradiation forms bonds from less important aromatic tyrosine and phenylalanine residues. We therefore hypothesised that UV cross-linking would not compromise collagen cell reactivity. Here, highly porous (~99 %) isotropic, collagen-based scaffolds were produced via ice-templating. A series of scaffolds (pore diameters ranging from 130-260 µm) with ascending stability in water was made from gelatin, two different sources of collagen I, or blends of these materials. Glucose, known to aid UV crosslinking of collagen, was added to some lower-stability formulations. These scaffolds were exposed to different doses of UV irradiation, and the scaffold morphology, dissolution stability in water, resistance to compression and cell reactivity was assessed. Stabilisation in aqueous media varied with both the nature of the collagen-based material employed and the UV intensity. Scaffolds made from the most stable materials showed the greatest stability after irradiation, although the levels of cross-linking in all cases were relatively low. Scaffolds made from pure collagen from the two different sources showed different optimum levels of irradiation, suggesting altered balance between stabilisation from cross-linking and destabilisation from denaturation. The introduction of glucose into the scaffold enhanced the efficacy of UV cross-linking. Finally, as hypothesized, cell attachment, spreading and proliferation on collagen materials were unaffected by UV cross-linking. UV irradiation may therefore be used to provide relatively low level cross-linking of collagen without loss of biological functionality.


Asunto(s)
Colágeno Tipo I/química , Andamios del Tejido , Rayos Ultravioleta , Animales , Sitios de Unión , Bovinos , Adhesión Celular , Línea Celular Tumoral , Proliferación Celular , Humanos , Microscopía Electrónica de Rastreo
5.
J Biol Chem ; 289(3): 1467-77, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24293364

RESUMEN

Tropoelastin protein monomers assemble to form elastin. Cellular integrin αVß3 binds RKRK at the C-terminal tail of tropoelastin. We probed cell interactions with tropoelastin by deleting the RKRK sequence to identify other cell-binding interactions within tropoelastin. We found a novel human dermal fibroblast attachment and spreading site on tropoelastin that is located centrally in the molecule. Inhibition studies demonstrated that this cell adhesion was not mediated by either elastin-binding protein or glycosaminoglycans. Cell interactions were divalent cation-dependent, indicating integrin dependence. Function-blocking monoclonal antibodies revealed that αV integrin(s) and integrin αVß5 specifically were critical for cell adhesion to this part of tropoelastin. These data reveal a common αV integrin-binding theme for tropoelastin: αVß3 at the C terminus and αVß5 at the central region of tropoelastin. Each αV region contributes to fibroblast attachment and spreading, but they differ in their effects on cytoskeletal assembly.


Asunto(s)
Fibroblastos/metabolismo , Receptores de Vitronectina/metabolismo , Tropoelastina/metabolismo , Adhesión Celular/fisiología , Línea Celular , Fibroblastos/citología , Humanos , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Receptores de Vitronectina/genética , Tropoelastina/genética
6.
Proc Natl Acad Sci U S A ; 108(35): 14405-10, 2011 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-21844370

RESUMEN

Immobilizing a protein, that is fully compatible with the patient, on the surface of a biomedical device should make it possible to avoid adverse responses such as inflammation, rejection, or excessive fibrosis. A surface that strongly binds and does not denature the compatible protein is required. Hydrophilic surfaces do not induce denaturation of immobilized protein but exhibit a low binding affinity for protein. Here, we describe an energetic ion-assisted plasma process that can make any surface hydrophilic and at the same time enable it to covalently immobilize functional biological molecules. We show that the modification creates free radicals that migrate to the surface from a reservoir beneath. When they reach the surface, the radicals form covalent bonds with biomolecules. The kinetics and number densities of protein molecules in solution and free radicals in the reservoir control the time required to form a full protein monolayer that is covalently bound. The shelf life of the covalent binding capability is governed by the initial density of free radicals and the depth of the reservoir. We show that the high reactivity of the radicals renders the binding universal across all biological macromolecules. Because the free radical reservoir can be created on any solid material, this approach can be used in medical applications ranging from cardiovascular stents to heart-lung machines.


Asunto(s)
Equipos y Suministros/efectos adversos , Radicales Libres , Máquina Corazón-Pulmón/efectos adversos , Proteínas/química , Stents/efectos adversos , Humanos , Conformación Proteica , Propiedades de Superficie
7.
Regen Biomater ; 10: rbad015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937897

RESUMEN

Collagen-based biomaterials are used widely as tissue engineering scaffolds because of their excellent bioactivity and their similarity to the natural ECM. The regeneration of healthy bone tissue requires simultaneous support for both osteoblasts and, where angiogenesis is intended, endothelial cells. Hence it is important to tailor carefully the biochemical and structural characteristics of the scaffold to suit the needs of each cell type. This work describes for the first time a systematic study to gain insight into the cell type-specific response of primary human osteoblast (hOBs) and human dermal microvascular endothelial cells (HDMECs) to insoluble collagen-based biomaterials. The behaviour was evaluated on both 2D films and 3D scaffolds, produced using freeze-drying. The collagen was cross-linked at various EDC/NHS concentrations and mono-cultured with hOBs and HDMECs to assess the effect of architectural features and scaffold stabilization on cell behaviour. It was observed that 3D scaffolds cross-linked at 30% of the standard conditions in literature offered an optimal combination of mechanical stiffness and cellular response for both cell types, although endothelial cells were more sensitive to the degree of cross-linking than hOBs. Architectural features have a time-dependent impact on the cell migration profile, with alignment being the most influential parameter overall.

8.
Biomater Adv ; 155: 213680, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37944449

RESUMEN

Regenerative cardiac tissue is a promising field of study with translational potential as a therapeutic option for myocardial repair after injury, however, poor electrical and contractile function has limited translational utility. Emerging research suggests scaffolds that recapitulate the structure of the native myocardium improve physiological function. Engineered cardiac constructs with anisotropic extracellular architecture demonstrate improved tissue contractility, signaling synchronicity, and cellular organization when compared to constructs with reduced architectural order. The complexity of scaffold fabrication, however, limits isolated variation of individual structural and mechanical characteristics. Thus, the isolated impact of scaffold macroarchitecture on tissue function is poorly understood. Here, we produce isotropic and aligned collagen scaffolds seeded with embryonic stem cell derived cardiomyocytes (hESC-CM) while conserving all confounding physio-mechanical features to independently assess the effects of macroarchitecture on tissue function. We quantified spatiotemporal tissue function through calcium signaling and contractile strain. We further examined intercellular organization and intracellular development. Aligned tissue constructs facilitated improved signaling synchronicity and directional contractility as well as dictated uniform cellular alignment. Cells on aligned constructs also displayed phenotypic and genetic markers of increased maturity. Our results isolate the influence of scaffold macrostructure on tissue function and inform the design of optimized cardiac tissue for regenerative and model medical systems.


Asunto(s)
Miocitos Cardíacos , Ingeniería de Tejidos , Ingeniería de Tejidos/métodos , Anisotropía , Miocardio , Diferenciación Celular
9.
Biomacromolecules ; 13(2): 379-86, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22176209

RESUMEN

Tropoelastin is the precursor of the extracellular protein elastin and is utilized in tissue engineering and implant technology by adapting the interface presented by surface-bound tropoelastin. The preferred orientation of the surface bound protein is relevant to biointerface interactions, as the C-terminus of tropoelastin is known to be a binding target for cells. Using recombinant human tropoelastin we monitored the binding of tropoelastin on hydrophilic silica and on silica made hydrophobic by depositing a self-assembled monolayer of octadecyl trichlorosilane. The layered organization of deposited tropoelastin was probed using neutron and X-ray reflectometry under aqueous and dried conditions. In a wet environment, tropoelastin retained a solution-like structure when adsorbed on silica but adopted a brush-like structure when on hydrophobized silica. The orientation of the surface-bound tropoelastin was investigated using cell binding assays and it was found that the C-terminus of tropoelastin faced the bulk solvent when bound to the hydrophobic surface, but a mixture of orientations was adopted when tropoelastin was bound to the hydrophilic surface. Drying the tropoelastin-coated surfaces irreversibly altered these protein structures for both hydrophilic and hydrophobic surfaces.


Asunto(s)
Materiales Biocompatibles/síntesis química , Dióxido de Silicio/química , Ingeniería de Tejidos/métodos , Adsorción , Materiales Biocompatibles/farmacología , Adhesión Celular/efectos de los fármacos , Dermis/citología , Dermis/efectos de los fármacos , Desecación , Fibroblastos/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Proteica , Silanos/química , Soluciones , Propiedades de Superficie , Tropoelastina/química , Tropoelastina/metabolismo , Agua
10.
Bioact Mater ; 8: 210-219, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34541397

RESUMEN

X-ray micro-computed tomography (µ-CT) can be used to provide both qualitative and quantitative information on the structure of three-dimensional (3D) bioactive scaffolds. When performed in a dry state, µ-CT accurately reflects the structure of collagen-based scaffolds, but imaging in a wet state offers challenges with radiolucency. Here we have used phosphotungstic acid (PTA) as a contrast agent to visualise fully hydrated collagen scaffolds in a physiologically relevant environment. A systematic investigation was performed to understand the effects of PTA on the results of µ-CT imaging by varying sample processing variables such as crosslinking density, hydration medium and staining duration. Immersing samples in 0.3% PTA solution overnight completely stained the samples and the treatment provided a successful route for µ-CT analysis of crosslinked samples. However, significant structural artefacts were observed for samples which were either non-crosslinked or had low levels of crosslinking, which had a heterogeneous interior architecture with collapsed pores at the scaffold periphery. This work highlights the importance of optimising the choice of processing and staining conditions to ensure accurate visualisation for hydrated 3D collagen scaffolds in an aqueous medium.

11.
Pharm Res ; 28(6): 1415-21, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21103913

RESUMEN

PURPOSE: To modify blood-contacting stainless surfaces by covalently coating them with a serum-protease resistant form of tropoelastin (TE). To demonstrate that the modified TE retains an exposed, cell-adhesive C-terminus that persists in the presence of blood plasma proteases. METHODS: Recombinant human TE and a point mutant variant (R515A) of TE were labeled with (125)Iodine and immobilized on plasma-activated stainless steel (PAC) surfaces. Covalent attachment was confirmed using rigorous detergent washing. As kallikrein and thrombin dominate the serum degradation of tropoelastin, supraphysiological levels of these proteases were incubated with covalently bound TE and R515A, then assayed for protein levels by radioactivity detection. Persistence of the C-terminus was assessed by ELISA. RESULTS: TE was significantly retained covalently on PAC surfaces at 88 ± 5% and 71 ± 5% after treatment with kallikrein and thrombin, respectively. Retention of R515A was 100 ± 1.3% and 87 ± 2.3% after treatment with kallikrein and thrombin, respectively, representing significant improvements over TE. The functionally important C-terminus was cleaved in wild-type TE but retained by R515A. CONCLUSIONS: Protein persists in the presence of human kallikrein and thrombin when covalently immobilized on metal substrata. R515A displays enhanced protease resistance and retains the C-terminus presenting a protein interface that is viable for blood-contacting applications.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/metabolismo , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Tropoelastina/química , Tropoelastina/metabolismo , Adhesión Celular , Estabilidad de Medicamentos , Humanos , Radioisótopos de Yodo/química , Marcaje Isotópico/métodos , Calicreínas/metabolismo , Péptido Hidrolasas/sangre , Mutación Puntual , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Acero Inoxidable/química , Propiedades de Superficie , Trombina/metabolismo , Tropoelastina/genética
12.
Chem Soc Rev ; 39(9): 3371-9, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20449520

RESUMEN

Elastin is a versatile elastic protein that dominates flexible tissues capable of recoil, and facilitates commensurate cell interactions in these tissues in all higher vertebrates. Elastin's persistence and insolubility hampered early efforts to construct versatile biomaterials. Subsequently the field has progressed substantially through the adapted use of solubilized elastin, elastin-based peptides and the increasing availability of recombinant forms of the natural soluble elastin precursor, tropoelastin. These interactions allow for the formation of a sophisticated range of biomaterial constructs and composites that benefit from elastin's physical properties of innate assembly and elasticity, and cell interactive properties as discussed in this tutorial review.


Asunto(s)
Materiales Biocompatibles/química , Elastina/química , Animales , Elasticidad , Humanos
13.
Nanomaterials (Basel) ; 11(5)2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33925197

RESUMEN

Biocompatible neural guidance conduits are alternatives to less abundant autologous tissue grafts for small nerve gap injuries. To address larger peripheral nerve injuries, it is necessary to design cell selective biomaterials that attract neuronal and/or glial cells to an injury site while preventing the intrusion of fibroblasts that cause inhibitory scarring. Here, we investigate a potential method for obtaining this selective cellular response by analysing the responses of rat Schwann cells and human dermal fibroblasts to isoleucine-lysine-valine-alanine-valine (IKVAV)-capped dendrimer-activated collagen films. A high quantity of nanoscale IKVAV-capped dendrimers incorporated onto pre-crosslinked collagen films promoted rat Schwann cell attachment and proliferation, and inhibited human dermal fibroblast proliferation. In addition, while pre-crosslinked dendrimer-activated films inhibited fibroblast proliferation, non-crosslinked dendrimer-activated films and films that were crosslinked after dendrimer-activation (post-crosslinked films) did not. The different cellular responses to pre-crosslinked and post-crosslinked films highlight the importance of having fully exposed, non-covalently bound biochemical motifs (pre-crosslinked films) directing certain cellular responses. These results also suggest that high concentrations of nanoscale IKVAV motifs can inhibit fibroblast attachment to biological substrates, such as collagen, which inherently attract fibroblasts. Therefore, this work points toward the potential of IKVAV-capped dendrimer-activated collagen biomaterials in limiting neuropathy caused by fibrotic scarring at peripheral nerve injury sites.

14.
Acta Biomater ; 135: 150-163, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34454082

RESUMEN

Recreating the cell niche of virtually all tissues requires composite materials fabricated from multiple extracellular matrix (ECM) macromolecules. Due to their wide tissue distribution, physical attributes and purity, collagen, and more recently, tropoelastin, represent two appealing ECM components for biomaterials development. Here we blend tropoelastin and collagen, harnessing the cell-modulatory properties of each biomolecule. Tropoelastin was stably co-blended into collagen biomaterials and was retained after EDC-crosslinking. We found that human dermal fibroblasts (HDF), rat glial cells (Rugli) and HT1080 fibrosarcoma cells ligate to tropoelastin via EDTA-sensitive and EDTA-insensitive receptors or do not ligate with tropoelastin, respectively. These differing elastin-binding properties allowed us to probe the cellular response to the tropoelastin-collagen composites assigning specific bioactivity to the collagen and tropoelastin component of the composite material. Tropoelastin addition to collagen increased total Rugli cell adhesion, spreading and proliferation. This persisted with EDC-crosslinking of the tropoelastin-collagen composite. Tropoelastin addition did not affect total HDF and HT1080 cell adhesion; however, it increased the contribution of cation-independent adhesion, without affecting the cell morphology or, for HT1080 cells, proliferation. Instead, EDC-crosslinking dictated the HDF and HT1080 cellular response. These data show that a tropoelastin component dominates the response of cells that possess non-integrin based tropoelastin receptors. EDC modification of the collagen component directs cell function when non-integrin tropoelastin receptors are not crucial for cell activity. Using this approach, we have assigned the biological contribution of each component of tropoelastin-collagen composites, allowing informed biomaterial design for directed cell function via more physiologically relevant mechanisms. STATEMENT OF SIGNIFICANCE: Biomaterials fabricated from multiple extracellular matrix (ECM) macromolecules are required to fully recreate the native tissue niche where each ECM macromolecule engages with a specific repertoire of cell-surface receptors. Here we investigate combining tropoelastin with collagen as they interact with cells via different receptors. We identified specific cell lines, which associate with tropoelastin via distinct classes of cell-surface receptor. These showed that tropoelastin, when combined with collagen, altered the cell behaviour in a receptor-usage dependent manner. Integrin-mediated tropoelastin interactions influenced cell proliferation and non-integrin receptors influenced cell spreading and proliferation. These data shed light on the interplay between biomaterial macromolecular composition, cell surface receptors and cell behaviour, advancing bespoke materials design and providing functionality to specific cell populations.


Asunto(s)
Materiales Biocompatibles , Tropoelastina , Animales , Adhesión Celular , Colágeno , Elastina , Ratas
15.
J Biol Chem ; 284(42): 28616-23, 2009 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-19617625

RESUMEN

Elastin fibers are predominantly composed of the secreted monomer tropoelastin. This protein assembly confers elasticity to all vertebrate elastic tissues including arteries, lung, skin, vocal folds, and elastic cartilage. In this study we examined the mechanism of cell interactions with recombinant human tropoelastin. Cell adhesion to human tropoelastin was divalent cation-dependent, and the inhibitory anti-integrin alpha(V)beta(3) antibody LM609 inhibited cell spreading on tropoelastin, identifying integrin alpha(V)beta(3) as the major fibroblast cell surface receptor for human tropoelastin. Cell adhesion was unaffected by lactose and heparin sulfate, indicating that the elastin-binding protein and cell surface glycosaminoglycans are not involved. The C-terminal GRKRK motif of tropoelastin can bind to cells in a divalent cation-dependent manner, identifying this as an integrin binding motif required for cell adhesion.


Asunto(s)
Integrina alfaVbeta3/química , Tropoelastina/metabolismo , Secuencias de Aminoácidos , Animales , Bovinos , Adhesión Celular , Relación Dosis-Respuesta a Droga , Elastina/química , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Humanos , Modelos Biológicos , Estructura Terciaria de Proteína , Receptores de Superficie Celular/química , Piel/citología , Tropoelastina/química
16.
Regen Biomater ; 7(5): 471-482, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33149936

RESUMEN

Porous biomaterials which provide a structural and biological support for cells have immense potential in tissue engineering and cell-based therapies for tissue repair. Collagen biomaterials that can host endothelial cells represent promising tools for the vascularization of engineered tissues. Three-dimensional collagen scaffolds possessing controlled architecture and mechanical stiffness are obtained through freeze-drying of collagen suspensions, followed by chemical cross-linking which maintains their stability. However, cross-linking scaffolds renders their biological activity suboptimal for many cell types, including human umbilical vein endothelial cells (HUVECs), by inhibiting cell-collagen interactions. Here, we have improved crucial HUVEC interactions with such cross-linked collagen biomaterials by covalently coupling combinations of triple-helical peptides (THPs). These are ligands for collagen-binding cell-surface receptors (integrins or discoidin domain receptors) or secreted proteins (SPARC and von Willebrand factor). THPs enhanced HUVEC adhesion, spreading and proliferation on 2D collagen films. THPs grafted to 3D-cross-linked collagen scaffolds promoted cell survival over seven days. This study demonstrates that THP-functionalized collagen scaffolds are promising candidates for hosting endothelial cells with potential for the production of vascularized engineered tissues in regenerative medicine applications.

17.
ACS Appl Bio Mater ; 3(4): 2140-2149, 2020 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-32337501

RESUMEN

It has become increasingly evident that the mechanical and electrical environment of a cell is crucial in determining its function and the subsequent behavior of multicellular systems. Platforms through which cells can directly interface with mechanical and electrical stimuli are therefore of great interest. Piezoelectric materials are attractive in this context because of their ability to interconvert mechanical and electrical energy, and piezoelectric nanomaterials, in particular, are ideal candidates for tools within mechanobiology, given their ability to both detect and apply small forces on a length scale that is compatible with cellular dimensions. The choice of piezoelectric material is crucial to ensure compatibility with cells under investigation, both in terms of stiffness and biocompatibility. Here, we show that poly-l-lactic acid nanotubes, grown using a melt-press template wetting technique, can provide a "soft" piezoelectric interface onto which human dermal fibroblasts readily attach. Interestingly, by controlling the crystallinity of the nanotubes, the level of attachment can be regulated. In this work, we provide detailed nanoscale characterization of these nanotubes to show how differences in stiffness, surface potential, and piezoelectric activity of these nanotubes result in differences in cellular behavior.

18.
Acta Biomater ; 100: 280-291, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31586463

RESUMEN

Collagen constructs are widely used for tissue engineering. These are frequently chemically crosslinked, using EDC, to improve their stability and tailor their physical properties. Although generally biocompatible, chemical crosslinking can modify crucial amino acid side chains, such as glutamic acid, that are involved in integrin-mediated cell adhesion. Instead UV crosslinking modifies aromatic side chains. Here we elucidate the impact that EDC, in combination with UV, exerts on the activity of integrin-binding motifs. By employing a model cell line that exclusively utilises integrin α2ß1, we found that whilst EDC crosslinking modulated cell binding, from cation-dependent to cation-independent, UV-mediated crosslinking preserved native-like cell binding, proliferation and surface colonisation. Similar results were observed using a purified recombinant I-domain from integrin α1. Conversely, binding of the I-domain from integrin α2 was sensitive to UV, particularly at low EDC concentrations. Therefore, from this in vitro study, it appears that UV can be used to augment EDC whist retaining a specific subset of integrin-binding motifs in the native collagen molecule. These findings, delineating the EDC- and UV-susceptibility of cell-binding motifs, permit controlled cell adhesion to collagen-based materials through specific integrin ligation in vitro. However, in vivo, further consideration of the potential response to UV wavelength and dose is required in the light of literature reports that UV initiated collagen scission may lead to an adverse inflammatory response. STATEMENT OF SIGNIFICANCE: Recently, there has been rapid growth in the use of extracellular matrix-derived molecules, and in particular collagen, to fabricate biomaterials that replicate the cellular micro-environment. Often chemical or physical crosslinkers are required to enhance the biophysical properties of these materials. Despite extensive use of these crosslinkers, the cell-biological consequences have not been ascertained. To address this, we have investigated the integrin-binding properties of collagen after chemically crosslinking with EDC and physically crosslinking with UV-irradiation. We have established that whilst EDC crosslinking abates all of the integrin binding sites in collagen, UV selectively inhibits interaction with integrin-α2 but not -α1. By providing a mechanistic model for this behaviour, we have, for the first time, defined a series of crosslinking parameters to systematically control the interaction of collagen-based materials with defined cellular receptors.


Asunto(s)
Materiales Biocompatibles/metabolismo , Carbodiimidas/química , Colágeno/metabolismo , Reactivos de Enlaces Cruzados/química , Integrina alfa2beta1/metabolismo , Rayos Ultravioleta , Animales , Bovinos , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Humanos , Integrina alfa2beta1/química , Adhesividad Plaquetaria , Unión Proteica , Dominios Proteicos
19.
Acta Biomater ; 86: 158-170, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30586647

RESUMEN

Collagen is used extensively in tissue engineering due to its biocompatibility, near-universal tissue distribution, low cost and purity. However, native tissues are composites that include diverse extracellular matrix components, which influence strongly their mechanical and biological properties. Here, we provide important new findings on the differential regulation, by collagen and elastin, of the bio-response to the composite material. Soluble and insoluble elastin had differing effects on the stiffness and failure strength of the composite films. We established that Rugli cells bind elastin via EDTA-sensitive receptors, whilst HT1080 cells do not. These cells allowed us to probe the contribution of collagen alone (HT1080) and collagen plus elastin (Rugli) to the cellular response. In the presence of elastin, Rugli cell attachment, spreading and proliferation increased, presumably through elastin-binding receptors. By comparison, the attachment and spreading of HT1080 cells was modified by elastin inclusion, but without affecting their proliferation, indicating indirect modulation by elastin of the response of cells to collagen. These new insights highlight that access to elastin dominates the cellular response when elastin-binding receptors are present. In the absence of these receptors, modification of the collagen component and/or physical properties dictate the cellular response. Therefore, we can attribute the contribution of each constituent on the ultimate bioactivity of heterogeneous collagen-composite materials, permitting informed, systematic biomaterials design. STATEMENT OF SIGNIFICANCE: In recent years there has been a desire to replicate the complex extracellular matrix composition of tissues more closely, necessitating the need for composite protein-based materials. In this case both the physical and biochemical properties are altered with the addition of each component, with potential consequences on the cell. To date, the different contributions of each component have not been deconvolved, and instead the cell response to the scaffold as a whole has been observed. Instead, here, we have used specific cell lines, that are sensitive to specific components of an elastin-collagen composite, to resolve the bio-activity of each protein. This has shown that elastin-induced alteration of the collagen component can modulate early stage cell behaviour. By comparison the elastin component directly alters the cell response over the short and long term, but only where appropriate receptors are present on the cell. Due to the widespread use of collagen and elastin, we feel that this data permits, for the first time, the ability to systematically design collagen-composite materials to promote desired cell behaviour with associated advantages for biomaterials fabrication.


Asunto(s)
Materiales Biocompatibles/farmacología , Colágeno/farmacología , Elastina/farmacología , Animales , Bovinos , Adhesión Celular/efectos de los fármacos , Recuento de Células , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Colágeno/ultraestructura , Elastina/ultraestructura , Humanos , Solubilidad , Estrés Mecánico
20.
Biochem J ; 405(3): 417-28, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17472576

RESUMEN

Fibulin-5, an extracellular matrix glycoprotein expressed in elastin-rich tissues, regulates vascular cell behaviour and elastic fibre deposition. Recombinant full-length human fibulin-5 supported primary human aortic SMC (smooth-muscle cell) attachment through alpha5beta1 and alpha4beta1 integrins. Cells on fibulin-5 spread poorly and displayed prominent membrane ruffles but no stress fibres or focal adhesions, unlike cells on fibronectin that also binds these integrins. Cell migration and proliferation were significantly lower on fibulin-5 than on fibronectin. Treatment of cells on fibulin-5 with a beta1 integrin-activating antibody induced stress fibres, increased attachment, migration and proliferation, and stimulated signalling of epidermal growth factor receptor and platelet-derived growth factor receptors alpha and beta. Fibulin-5 also modulated fibronectin-mediated cell spreading and morphology. We have thus identified the beta1 integrins on primary SMCs that fibulin-5 interacts with, and have shown that failure of fibulin-5 to activate these receptors limits cell spreading, migration and proliferation.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Integrina alfa4beta1/metabolismo , Integrina alfa5beta1/metabolismo , Miocitos del Músculo Liso/metabolismo , Adhesión Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Regulación de la Expresión Génica , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA