Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Autoimmun ; 146: 103229, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653165

RESUMEN

Primary sclerosing cholangitis (PSC) is an (auto)immune-mediated cholestatic liver disease with a yet unclear etiology. Increasing evidence points to an involvement of neutrophils in chronic liver inflammation and cirrhosis but also liver repair. Here, we investigate the role of the neutrophil extracellular trap (NET) component myeloperoxidase (MPO) and the therapeutic potential of DNase I and of neutrophil elastase (NE) inhibitor GW311616A on disease outcome in the multidrug resistance 2 knockout (Mdr2-/-) mouse, a PSC animal model. Initially, we observed the recruitment of MPO expressing cells and the formation of NETs in liver biopsies of PSC patients and in Mdr2-/- livers. Furthermore, sera of Mdr2-/- mice contained perinuclear anti-neutrophil cytoplasmic antibody (p-ANCA)-like reactivity similar to PSC patient sera. Also, hepatic NE activity was significantly higher in Mdr2-/- mice than in wild type littermates. Flow cytometry analyses revealed that during disease development a highly active neutrophil subpopulation established specifically in the liver of Mdr2-/- mice. However, absence of their MPO activity, as in MPO-deficient Mdr2-/- mice, showed no effect on hepatobiliary disease severity. In contrast, clearance of extracellular DNA by DNase I reduced the frequency of liver-resident neutrophils, plasmacytoid dendritic cells (pDCs) and CD103+ conventional DCs and decreased cholangiocyte injury. Combination of DNase I with a pDC-depleting antibody was additionally hepatocyte-protective. Most importantly, GW311616A, an orally bioavailable inhibitor of human NE, attenuated hepatobiliary injury in a TNFα-dependent manner and damped hyperproliferation of biliary epithelial cells. Further, hepatic immigration and activity of CD11b+ DCs as well as the secretion of IFNγ by hepatic CD4 and CD8 T cells were reduced. Our findings delineate neutrophils as important participants in the immune cell crosstalk that drives cholestatic liver disease and identify NET components as potential therapeutic targets.


Asunto(s)
Miembro 4 de la Subfamilia B de Casete de Unión a ATP , Colangitis Esclerosante , Modelos Animales de Enfermedad , Trampas Extracelulares , Ratones Noqueados , Neutrófilos , Animales , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Ratones , Humanos , Colangitis Esclerosante/inmunología , Neutrófilos/inmunología , Neutrófilos/metabolismo , Colestasis/inmunología , Colestasis/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Hígado/patología , Hígado/inmunología , Hígado/metabolismo , Peroxidasa/metabolismo , Peroxidasa/inmunología , Desoxirribonucleasa I/metabolismo , Elastasa de Leucocito/metabolismo , Elastasa de Leucocito/antagonistas & inhibidores , Masculino , Femenino
2.
J Autoimmun ; 143: 103161, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38141419

RESUMEN

Although type 1 diabetes (T1D) results from the autoimmune destruction of the insulin-producing ß-cells, its treatment is largely restricted to exogenous insulin administration. Only few therapies targeting the autoaggressive immune system have been introduced into clinical practice or are considered in clinical trials. Here, we provide a gene expression profile of the islet microenvironment obtained by laser-dissection microscopy in an inducible mouse model. Thereby, we have identified novel targets for immune intervention. Increased gene expression of most inflammatory proteins was apparent at day 10 after T1D induction and largely paralleled the observed degree of insulitis. We further focused on genes involved in leukocyte migration, including chemokines and their receptors. Besides the critical chemokine CXCL10, we found several other chemokines upregulated locally in temporary or chronic manner. Localization of the chemokine ligand/receptor pairs to the islet microenvironment has been confirmed by RNAscope. Interference with the CXCL16-CXCR6 and CX3CL1-CX3CR1 axes, but not the CCL5-CCR1/3/5 axis, resulted in reduced insulitis and lower T1D incidence. Further, we found that the receptors for the differentially expressed chemokines CXCL10, CXCL16 and CX3CL1 are distributed unevenly among islet autoantigen-specific T cells, which explains why the interference with just one chemokine axis cannot completely abrogate insulitis and T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Ratones , Animales , Ratones Endogámicos NOD , Quimiocina CXCL10/genética , Insulina/metabolismo
3.
Clin Exp Immunol ; 214(2): 131-143, 2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-37458220

RESUMEN

Treatment of patients with recent-onset type 1 diabetes with an anti-CD3 antibody leads to the transient stabilization of C-peptide levels in responder patients. Partial efficacy may be explained by the entry of islet-reactive T-cells spared by and/or regenerated after the anti-CD3 therapy. The CXCR3/CXCL10 axis has been proposed as a key player in the infiltration of autoreactive T cells into the pancreatic islets followed by the destruction of ß cells. Combining the blockade of this axis using ACT-777991, a novel small-molecule CXCR3 antagonist, with anti-CD3 treatment may prevent further infiltration and ß-cell damage and thus, preserve insulin production. The effect of anti-CD3 treatment on circulating T-cell subsets, including CXCR3 expression, in mice was evaluated by flow cytometry. Anti-CD3/ACT-777991 combination treatment was assessed in the virally induced RIP-LCMV-GP and NOD diabetes mouse models. Treatments started at disease onset. The effects on remission rate, blood glucose concentrations, insulitis, and plasma C-peptide were evaluated for the combination treatment and the respective monotherapies. Anti-CD3 treatment induced transient lymphopenia but spared circulating CXCR3+ T cells. Combination therapy in both mouse models synergistically and persistently reduced blood glucose concentrations, resulting in increased disease remission rates compared to each monotherapy. At the study end, mice in disease remission demonstrated reduced insulitis and detectable plasma C-peptide levels. When treatments were initiated in non-severely hyperglycemic NOD mice at diabetes onset, the combination treatment led to persistent disease remission in all mice. These results provide preclinical validation and rationale to investigate the combination of ACT-777991 with anti-CD3 for the treatment of patients with recent-onset diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Humanos , Ratones , Animales , Ratones Endogámicos NOD , Glucemia , Péptido C , Anticuerpos Monoclonales/uso terapéutico , Modelos Teóricos , Receptores CXCR3
4.
Exp Cell Res ; 417(1): 113164, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35526568

RESUMEN

Skeletal muscle possesses remarkable adaptability to mechanical loading and regenerative potential following muscle injury primarily due to satellite cell activity. Although the roles of several types of interstitial cells in skeletal muscle have been documented, the signaling interplay between the skeletal muscle and the adjacent tendon tissue has not been elucidated. Here, we tested whether human tendon derived cells (tenocytes) could induce human myogenic cells (myoblasts) proliferation and differentiation in vitro using co-culture experiments that allowed us to investigate the effect of tenocytes secretion upon myogenic progression. This was done in vitro by introducing insert wells with either myoblasts, tenocytes, or no cells (control) into a myoblast containing well (co-culture). Immunofluorescence analysis revealed a higher fusion index (≥5 nuclei within one Desmin + myotube) and a higher myotube diameter in co-cultures with tenocytes compared to myoblasts condition. Correspondingly, MHC-IIX gene expression was up-regulated when co-cultured with tenocytes. However, the proliferation of myoblasts (either Ki67 or BrdU + cells) was not enhanced under the presence of tenocytes. These findings show that tenocytes influence myotube formation upon human primary cells in vitro and contribute to understanding the role of tendon derived cells in skeletal muscle during development and regeneration.


Asunto(s)
Fibras Musculares Esqueléticas , Mioblastos , Diferenciación Celular , Células Cultivadas , Humanos , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/fisiología , Mioblastos/metabolismo , Tendones
5.
Scand J Med Sci Sports ; 33(12): 2585-2597, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37621063

RESUMEN

BACKGROUND: Muscle strain injuries in the human calf muscles are frequent sports injuries with high recurrence. Potential structural and functional changes in the medial head of the musculus gastrocnemius (GM) and the associated aponeurosis are not well documented. PURPOSE: To test whether a GM muscle strain injury affects muscle fascicle length, pennation angle, and the morphology of the deep aponeurosis at rest and during muscle contraction long time after the injury. Additionally, electromyography (EMG) of the GM and the soleus muscle during a unilateral heel rise was measured in the injured and uninjured calf. METHODS: GM fascicle length, pennation angle, and aponeurosis thickness was analyzed on dynamic ultrasonography (US) recordings in 10 participants with a chronic calf strain. In addition, US images taken across the distal portion and mid-belly of the GM were analyzed at three different ankle positions. EMG recordings were obtained during a unilateral heel rise. RESULTS: The pennation angle of the injured distal GM was significantly larger compared to the uninjured GM in the contracted, but not the relaxed state. Pennation angle increased more in the injured compared to the uninjured GM during contraction. Fascicle length was shorter in the most distal portion of the injured GM. Fascicles at the distal portion of the injured GM showed a pronounced curvilinear shape as the muscle contracted and the aponeurosis was enlarged in the injured compared to the uninjured GM. The ratio between GM and soleus EMG activity showed a significantly higher relative soleus activity in the injured compared to the healthy calf. CONCLUSION: The greater change in pennation angle and curvilinear fascicle shape during contraction suggest that a long-term consequence after a muscle strain injury is that some muscle fibers at the distal GM are not actively engaged. The significantly enlarged aponeurosis indicates a substantial and long-lasting connective tissue involvement following strain injuries.


Asunto(s)
Aponeurosis , Esguinces y Distensiones , Humanos , Aponeurosis/diagnóstico por imagen , Músculo Esquelético/fisiología , Electromiografía , Fibras Musculares Esqueléticas , Contracción Muscular/fisiología , Ultrasonografía , Esguinces y Distensiones/diagnóstico por imagen
6.
Cell Tissue Res ; 381(1): 177-187, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32112256

RESUMEN

Integrins are important for mechanosensation in tissue and play, together with nutrition, a role in regulating extracellular matrix (ECM) in skeletal muscle and tendon. Integrin receptors are dimers that consist of an α and ß subunit and bridge extracellular and intracellular signals. The present study investigates whether the deletion of the integrin receptor α1 subunit influences collagen and other matrix proteins in the musculotendinous tissue and whether it causes any compensatory changes in other integrin subunits in C57BL/6J mice. In addition, we study whether a high-fat diet (HFD) influences these responses in muscle or tendon. Mice on a HFD had a higher number of non-enzymatic cross-links in skeletal muscle ECM and increased gene expression of collagen and other extracellular matrix proteins. In contrast to gene expression, total collagen protein content was decreased by HFD in the muscle with no change in tendon. Integrin α1 subunit knockout resulted in a decrease of collagen type I and III, TGF-ß1 and IGF-1 gene expression in muscle of HFD mice but did not affect total collagen protein compared with wild-type (WT) littermates in either muscle or tendon. There was no compensatory increase in the genes that express other integrin subunits. In conclusion, HFD induced a significant increase in expression of ECM genes in muscle. On the protein level, HFD resulted in a lower collagen content in muscle. Tendons were unaffected by the diet. Deletion of the integrin α1 subunit did not affect collagen protein or gene expression in muscle or tendon.


Asunto(s)
Tendón Calcáneo/metabolismo , Colágeno/metabolismo , Matriz Extracelular , Integrina alfa1/fisiología , Músculo Esquelético/metabolismo , Animales , Dieta Alta en Grasa , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/metabolismo
7.
FASEB J ; 33(9): 10369-10382, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31211922

RESUMEN

Traumatic strain injury in skeletal muscle is often associated with fluid accumulation at the site of rupture, but the role of this injury exudate (EX) in cellular responses and healing is unknown. We aimed to characterize the EX sampled from human hamstring or calf muscles following a strain injury (n = 12). The cytokine and growth-factor profile, gene expression, and transcriptome analysis of EX-derived cells were compared with blood taken simultaneously from the same individuals. Cellular responses to the EX were tested in 3-dimensional (3D) culture based on primary human fibroblasts and myoblasts isolated from hamstring muscles. The EX contained a highly proinflammatory profile with a substantial expression of angiogenic factors. The proinflammatory profile was present in samples taken early postinjury and in samples aspirated several weeks postinjury, suggesting persistent inflammation. Cells derived from the EX demonstrated an increased expression of fibrogenic, adipogenic, and angiogenesis-related genes in comparison with blood cells. The injury EX stimulated fibroblast proliferation 2-fold compared with plasma, whereas such an effect was not seen for myoblasts. Finally, in 3D cell culture, the EX induced an up-regulation of connective tissue-related genes. In summary, EX formation following a muscle-strain injury stimulates fibroblast proliferation and the synthesis of connective tissue in fibroblasts. This suggests that the EX promotes an acute tissue-healing response but potentially also contributes to the formation of fibrotic tissue in the later phases of tissue repair.-Bayer, M. L., Bang, L., Hoegberget-Kalisz, M., Svensson, R. B., Olesen, J. L., Karlsson, M. M., Schjerling, P., Hellsten, Y., Hoier, B., Magnusson, S. P., Kjaer, M. Muscle-strain injury exudate favors acute tissue healing and prolonged connective tissue formation in humans.


Asunto(s)
Tejido Conectivo/fisiología , Exudados y Transudados/citología , Fibroblastos/citología , Músculo Esquelético/fisiología , Enfermedades Musculares/prevención & control , Mioblastos/citología , Cicatrización de Heridas , Adolescente , Adulto , Biomarcadores/análisis , Proliferación Celular , Femenino , Fibroblastos/fisiología , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/lesiones , Enfermedades Musculares/patología , Mioblastos/fisiología , Adulto Joven
8.
Liver Int ; 39(12): 2330-2340, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31225929

RESUMEN

BACKGROUND & AIMS: Four major autoimmune diseases target the liver. They develop because of bile duct destruction, leading to chronic cholestasis or result from hepatocyte damage like autoimmune hepatitis (AIH). Interestingly, some patients simultaneously show features of both cholangitis and AIH. Our goal was to mimic such concurrent characteristics in a mouse model that would help deciphering mechanisms possibly involved in an inflammatory crosstalk between cholestatic disease and hepatitis. METHODS: Mdr2-/- mice, which spontaneously develop sclerosing cholangitis because of accumulation of toxic bile salts, were infected with adenovirus (Ad) encoding human Cytochrome P4502D6 (hCYP2D6), the major target autoantigen in type-2 AIH, to trigger hepatocyte injury. Wild type FVB mice were controls. RESULTS: Resulting Ad-Mdr2-/- mice presented with cholangitis, fibrosis and cellular infiltrations that were higher than in Mdr2-/- or Ad-FVB mice. Increased levels of anti-neutrophil cytoplasmic antibodies but similar anti-hCYP2D6 antibody titres were detected in Ad-Mdr2-/- compared to Mdr2-/- and Ad-FVB mice respectively. IFNγ-expressing hCYP2D6-specific CD4 T cells declined, whereas hCYP2D6-specific CD8 T cells increased in Ad-Mdr2-/- compared to Ad-FVB mice. The overall T cell balance in Ad-Mdr2-/- mice was a combination of a type 17 T cell response typically found in Mdr2-/- mice with a type 1 dominated T cell response characteristic for Ad-FVB mice. Simultaneously, the type 2 T cell compartment was markedly reduced. CONCLUSIONS: Experimental hepatitis induction in a mouse with sclerosing cholangitis results in a disorder which represents not simply the sum of the individual characteristics but depicts a more complex entity which urges on further analysis.


Asunto(s)
Colangitis Esclerosante/complicaciones , Hepatitis Autoinmune/complicaciones , Hígado/patología , Adenoviridae , Animales , Colangitis Esclerosante/patología , Citocromo P-450 CYP2D6/inmunología , Modelos Animales de Enfermedad , Femenino , Hepatitis Autoinmune/patología , Hepatocitos/inmunología , Ratones , Linfocitos T/fisiología
9.
J Autoimmun ; 91: 83-96, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29753567

RESUMEN

Fibrosis remains a serious health concern in patients with chronic liver disease. We recently reported that chemically induced chronic murine liver injury triggers increased expression of junctional adhesion molecules (JAMs) JAM-B and JAM-C by endothelial cells and de novo synthesis of JAM-C by hepatic stellate cells (HSCs). Here, we demonstrate that biopsies of patients suffering from primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC) or autoimmune hepatitis (AIH) display elevated levels of JAM-C on portal fibroblasts (PFs), HSCs, endothelial cells and cholangiocytes, whereas smooth muscle cells expressed JAM-C constitutively. Therefore, localization and function of JAM-B and JAM-C were investigated in three mouse models of autoimmune-driven liver inflammation. A PBC-like disease was induced by immunization with 2-octynoic acid-BSA conjugate, which resulted in the upregulation of both JAMs in fibrotic portal triads. Analysis of a murine model of PSC revealed a role of JAM-C in PF cell-cell adhesion and contractility. In mice suffering from AIH, endothelial cells increased JAM-B level and HSCs and capsular fibroblasts became JAM-C-positive. Most importantly, AIH-mediated liver fibrosis was reduced in JAM-B-/- mice or when JAM-C was blocked by soluble recombinant JAM-C. Interestingly, loss of JAM-B/JAM-C function had no effect on leukocyte infiltration, suggesting that the well-documented function of JAMs in leukocyte recruitment to inflamed tissue was not effective in the tested chronic models. This might be different in patients and may even be complicated by the fact that human leukocytes express JAM-C. Our findings delineate JAM-C as a mediator of myofibroblast-operated contraction of the liver capsule, intrahepatic vasoconstriction and bile duct stricture. Due to its potential to interact heterophilically with endothelial JAM-B, JAM-C supports also HSC/PF mural cell function. Together, these properties allow JAM-B and JAM-C to actively participate in vascular remodeling associated with liver/biliary fibrosis and suggest them as valuable targets for anti-fibrosis therapies.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Colangitis Esclerosante/metabolismo , Células Endoteliales/metabolismo , Hepatitis Autoinmune/metabolismo , Inmunoglobulinas/metabolismo , Inflamación/metabolismo , Cirrosis Hepática Biliar/metabolismo , Hígado/patología , Miocitos del Músculo Liso/metabolismo , Miofibroblastos/metabolismo , Animales , Adhesión Celular , Moléculas de Adhesión Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Ácidos Grasos Monoinsaturados/inmunología , Femenino , Fibrosis , Humanos , Inmunoglobulinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Remodelación Vascular , Vasoconstricción
10.
Scand J Med Sci Sports ; 28(12): 2579-2591, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30043997

RESUMEN

Muscle strain injuries disrupt the muscle-tendon unit, early rehabilitation is associated with a faster return to sports (RTS), but the time course of tissue healing remains sparsely described. The purpose was to examine tissue regeneration and the effectiveness of early versus delayed rehabilitation onset on functional and structural recovery after strain injuries. A total of 50 recreational athletes with a severe acute strain injury in their thigh or calf muscles were randomized to early or delayed rehabilitation onset. Magnetic resonance imaging (MRI) was obtained initially, 3 and 6 months postinjury, and dynamic contrast-enhanced MRI (DCE-MRI) estimated tissue inflammation initially and after 6 months. Muscle strength was determined 5 weeks, 3 months, and 6 months postinjury, and a questionnaire determined soreness, pain, and confidence. DCE-MRI microvascular perfusion was higher in the injured compared to an uninjured muscle acutely (P < 0.01) and after 6 months (P < 0.01), for both groups (P > 0.05) and unrelated to RTS (P > 0.05). Total volume of the injured muscle decreased from the acute to the 3-month scan, and to the 6-month scan (P < 0.01) in both groups. Muscle strength was similar in both groups at any time. There was a nonsignificant trend (P ≤ 0.1) toward less pain and higher confidence with early rehabilitation. One reinjury was recorded. In conclusion, our data showed prolonged tissue repair with the initial response linked to muscle atrophy but did not explain why early rehabilitation onset accelerated recovery considering that structural and functional recovery was similar with early and delayed rehabilitation.


Asunto(s)
Traumatismos en Atletas/rehabilitación , Fuerza Muscular , Músculo Esquelético/lesiones , Dolor , Esguinces y Distensiones/rehabilitación , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Imagen de Perfusión , Recuperación de la Función , Volver al Deporte , Adulto Joven
11.
Histochem Cell Biol ; 147(1): 97-102, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27565969

RESUMEN

Increased tendon cell nuclei density (TCND) has been proposed to induce tendon mechanical adaptations. However, it is unknown whether TCND is increased in tendon tissue after mechanical loading and whether such an increase can be quantified in a reliable manner. The aim of this study was to develop a reliable method for quantification of TCND and to investigate potential changes in TCND in rat Achilles tendons in response to 12 weeks of running. Eight adult male Sprague-Dawley rats ran (RUN) on a treadmill with 10° incline, 1 h/day, 5 days/wk (17-20 m/min) for 12 weeks (which improved tendon mechanical properties) and were compared with 11 control rats (SED). Tissue-Tek-embedded cryosections (10 µm) from the mid region of the Achilles tendon were cut longitudinally on a cryostat. Sections were stained with alcian blue and picrosirius red. One blinded investigator counted the number of tendon cell nuclei 2-3 times in three separate regions of the mid longitudinal tendon sections with fields of 390 µm × 280 µm. Unpaired t tests were used for the statistical analysis (mean ± SE). Typical Error % for replicate counts was 5.5 and 14 % coefficient of variation for the three regions. There was no difference in TCND between running rats versus control rats (nuclei per image (≈105 µm2): RUN, 152 ± 9; SED, 146 ± 8, p = 0.642). This new method provided reproducible quantification of TCND. There was no difference in TCND despite improvements in tendon mechanics, which suggests that cell number is not a major cause for altered tendon mechanical properties with loading.


Asunto(s)
Tendón Calcáneo/citología , Recuento de Células , Animales , Núcleo Celular , Masculino , Ratas , Ratas Sprague-Dawley , Adhesión del Tejido
12.
J Autoimmun ; 69: 51-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26924542

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) and its more severe development non-alcoholic steatohepatitis (NASH) are increasing worldwide. In particular NASH, which is characterized by an active hepatic inflammation, has often severe consequences including progressive fibrosis, cirrhosis, and eventually hepatocellular carcinoma (HCC). Here we investigated how metabolic liver injury is influencing the pathogenesis of autoimmune hepatitis (AIH). We used the CYP2D6 mouse model in which wild type C57BL/6 mice are infected with an Adenovirus expressing the major liver autoantigen cytochrome P450 2D6 (CYP2D6). Such mice display several features of human AIH, including interface hepatitis, formation of LKM-1 antibodies and CYP2D6-specific T cells, as well as hepatic fibrosis. NAFLD was induced with a high-fat diet (HFD). We found that pre-existing NAFLD potentiates the severity of AIH. Mice fed for 12 weeks with a HFD displayed increased cellular infiltration of the liver, enhanced hepatic fibrosis and elevated numbers of liver autoantigen-specific T cells. Our data suggest that a pre-existing metabolic liver injury constitutes an additional risk for the severity of an autoimmune condition of the liver, such as AIH.


Asunto(s)
Citocromo P-450 CYP2D6/inmunología , Hepatitis Autoinmune/etiología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/inmunología , Animales , Autoanticuerpos/inmunología , Autoantígenos/genética , Autoantígenos/inmunología , Citocromo P-450 CYP2D6/genética , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Fibrosis , Hepatitis Autoinmune/diagnóstico , Hepatitis Autoinmune/metabolismo , Humanos , Hígado/inmunología , Hígado/metabolismo , Hígado/patología , Pruebas de Función Hepática , Masculino , Ratones , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Índice de Severidad de la Enfermedad
14.
Liver Int ; 35(4): 1265-73, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24905825

RESUMEN

BACKGROUND & AIMS: Matrilins are a family of four oligomeric adaptor proteins whose functions in extracellular matrix assembly during pathophysiological events still need to be explored in more detail. Matrilin-2 is the largest family member and the only matrilin expressed in the naive liver. Several studies demonstrate that matrilin-2 interacts with collagen I, fibronectin or laminin-111-nidogen-1 complexes. All these matrix components get upregulated during hepatic scar tissue formation. Therefore, we tested whether matrilin-2 has an influence on the formation and/or the resolution of fibrotic tissue in the mouse liver. METHODS: Fibrosis was induced by infection with an adenovirus encoding cytochrome P450 2D6 (autoimmune liver damage) or by exposure to the hepatotoxin carbon tetrachloride. Fibrosis severity and matrilin-2 expression were assessed by immunohistochemistry. Hepatic stellate cells (HSCs) were isolated and analysed by immunocytochemistry and Transwell migration assays. RESULTS: Both autoimmune as well as chemically induced liver damage led to simultaneous upregulation of matrilin-2 and collagen I expression. Discontinuation of carbon tetrachloride exposure resulted in concomitant dissolution of both proteins. Activated HSCs were the source of de novo matrilin-2 expression. Comparing wild type and matrilin-2-deficient mice, no differences were detected in fibronectin and collagen I upregulation and resolution kinetics as well as amount or location of fibronectin and collagen I production and degradation. CONCLUSIONS: Our findings suggest that the absence of matrilin-2 has no effect on HSC activation and regression kinetics, synthetic activity, proliferative capacity, motility, or HSC apoptosis.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Hepatitis Autoinmune/metabolismo , Cirrosis Hepática Experimental/metabolismo , Hígado/metabolismo , Animales , Apoptosis , Línea Celular , Movimiento Celular , Proliferación Celular , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colágeno Tipo I/metabolismo , Fibronectinas/metabolismo , Células Estrelladas Hepáticas/patología , Hepatitis Autoinmune/genética , Hepatitis Autoinmune/patología , Humanos , Cinética , Hígado/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/patología , Proteínas Matrilinas/deficiencia , Proteínas Matrilinas/genética , Proteínas Matrilinas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Índice de Severidad de la Enfermedad , Transducción de Señal , Regulación hacia Arriba
15.
Dev Dyn ; 242(1): 2-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23109434

RESUMEN

BACKGROUND: Collagen-rich tendons and ligaments are important for joint stability and force transmission, but the capacity to form new tendon is poorly understood. In the present study, we investigated mechanical strength, fibril size, and structure during development of tendon-like tissue from adult human tenocytes (termed tendon constructs) in vitro over 5 weeks in 3D tissue culture. RESULTS: The constructs displayed large elongated tendon cells aligned along the tendon axis together with collagen fibrils that increased in diameter by 50% from day 14 to 35, which approaches that observed in adult human tendon in vivo. The increase in diameter was accompanied by a 5-fold increase in mechanical strength (0.9±0.1 MPa to 4.9±0.6 MPa) and Young's modulus (5.8±0.9 MPa to 32.3±4.2 MPa), while the maximal strain at failure (16%) remained constant throughout the 5-week culture period. CONCLUSIONS: The present study demonstrates that 3D tendon constructs can be formed by isolated human tendon fibroblasts, and when these constructs are subjected to static self-generated tension, the fibrils will grow in size and strength approaching that of adult human tendon in vivo.


Asunto(s)
Colágenos Fibrilares/fisiología , Fibroblastos/citología , Morfogénesis/fisiología , Tendones/crecimiento & desarrollo , Técnicas de Cultivo de Tejidos/métodos , Ingeniería de Tejidos/métodos , Adulto , Fenómenos Biomecánicos , Colágenos Fibrilares/ultraestructura , Humanos , Microscopía Electrónica
16.
J Autoimmun ; 44: 49-60, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23809878

RESUMEN

Autoimmune hepatitis type 2 (AIH-2) is a severe autoimmune liver disease with unknown etiology. We recently developed the CYP2D6 mouse model for AIH-2, in which mice are challenged with an adenovirus (Ad-2D6) expressing human cytochrome P450 2D6 (hCYP2D6), the major autoantigen in AIH-2. Such mice develop chronic hepatitis with cellular infiltrations and generation of hCYP2D6-specific antibodies and T cells. Importantly, the CYP2D6 model represents the only model displaying chronic fibrosis allowing for a detailed investigation of the mechanisms of chronic autoimmune-mediated liver fibrogenesis. We found that hCYP2D6-dependent chronic activation of hepatic stellate cells (HSC) resulted in an increased extracellular matrix deposition and elevated expression of α-smooth muscle actin predominantly in and underneath the liver capsule. The route of Ad-2D6 infection dramatically influenced the activation and trafficking of inflammatory monocytes, NK cells and hCYP2D6-specific T cells. Intraperitoneal Ad-2D6 infection caused subcapsular fibrosis and persistent clustering of inflammatory monocytes. In contrast, intravenous infection caused an accumulation of hCYP2D6-specific CD4 T cells throughout the liver parenchyma and induced a strong NK cell response preventing chronic HSC activation and fibrosis. In summary, we found that the location of the initial site of inflammation and autoantigen expression caused a differential cellular trafficking and activation and thereby determined the outcome of AIH-2-like hepatic damage and fibrosis.


Asunto(s)
Infecciones por Adenoviridae/inmunología , Adenoviridae/inmunología , Autoantígenos/inmunología , Citocromo P-450 CYP2D6/inmunología , Hepatitis Autoinmune/inmunología , Hígado/inmunología , Actinas/inmunología , Animales , Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Fibrosis/inmunología , Células Estrelladas Hepáticas/inmunología , Humanos , Inflamación/inmunología , Células Asesinas Naturales/inmunología , Hepatopatías/inmunología , Ratones , Monocitos/inmunología
17.
J Autoimmun ; 42: 39-49, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23200317

RESUMEN

In our novel mouse model for autoimmune hepatitis (AIH), wildtype FVB mice infected with an Adenovirus (Ad) expressing the major AIH autoantigen human cytochrome P450 2D6 (hCYP2D6) show persistent histological and immunological features associated with AIH, including the generation of anti-hCYP2D6 antibodies with an epitope specificity identical to LKM-1 autoantibodies in AIH-patients. Since FVB mice do not express hCYP2D6, the immune response was directed against mouse CYP (mCYP) homologues. Additional expression of hCYP2D6 in transgenic mice resulted in amelioration of the liver disease. In the present study we used the CYP2D6 model to assess why tolerance breakdown and induction of autoimmune liver disease is more efficient if the triggering antigen is similar but not identical to the target autoantigen. We found that in contrast to the specificity and magnitude of anti-hCYP2D6 antibody responses, T-cell responses differ profoundly between wildtype and transgenic mice. Detailed T-cell epitope mapping studies show a robust, antigen-specific T-cell reactivity in FVB mice largely directed against one CD4 and three CD8 epitopes, activating a total of approximately 1% CD4 and 10% CD8 T-cells, respectively, while infected hCYP2D6 mice generated almost no hCYP2D6-specific T-cells. The frequency of hCYP2D6-specific T-cells was approximately 3-fold higher in the liver compared with the spleen. Amino acid sequence comparison revealed that the immunodominant epitopes were located in hCYP2D6-segments of intermediate homology between hCYP2D6 and its mCYP homologues. Our data indicate that self/non-self molecular mimicry, rather than molecular identity, is a prerequisite for breaking T-cell tolerance in the liver.


Asunto(s)
Autoantígenos/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocromo P-450 CYP2D6/metabolismo , Hepatitis Autoinmune/inmunología , Imitación Molecular/inmunología , Adenoviridae , Animales , Autoantígenos/genética , Autoantígenos/inmunología , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/inmunología , Modelos Animales de Enfermedad , Vectores Genéticos , Humanos , Tolerancia Inmunológica , Inmunidad Celular/genética , Inmunidad Humoral/genética , Hígado/inmunología , Hígado/patología , Ratones , Ratones Endogámicos , Ratones Transgénicos , Homología de Secuencia de Aminoácido , Especificidad de la Especie
18.
Cell Death Dis ; 13(4): 402, 2022 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-35461310

RESUMEN

Tendons are vital collagen-dense specialized connective tissues transducing the force from skeletal muscle to the bone, thus enabling movement of the human body. Tendon cells adjust matrix turnover in response to physiological tissue loading and pathological overloading (tendinopathy). Nevertheless, the regulation of tendon matrix quality control is still poorly understood and the pathogenesis of tendinopathy is presently unsolved. Autophagy, the major mechanism of degradation and recycling of cellular components, plays a fundamental role in the homeostasis of several tissues. Here, we investigate the contribution of autophagy to human tendons' physiology, and we provide in vivo evidence that it is an active process in human tendon tissue. We show that selective autophagy of the endoplasmic reticulum (ER-phagy), regulates the secretion of type I procollagen (PC1), the major component of tendon extracellular matrix. Pharmacological activation of autophagy by inhibition of mTOR pathway alters the ultrastructural morphology of three-dimensional tissue-engineered tendons, shifting collagen fibrils size distribution. Moreover, autophagy induction negatively affects the biomechanical properties of the tissue-engineered tendons, causing a reduction in mechanical strength under tensile force. Overall, our results provide the first evidence that autophagy regulates tendon homeostasis by controlling PC1 quality control, thus potentially playing a role in the development of injured tendons.


Asunto(s)
Autofagia , Tendinopatía , Tendones , Autofagia/fisiología , Colágeno/metabolismo , Colágeno/fisiología , Homeostasis , Humanos , Tendinopatía/metabolismo , Tendinopatía/patología , Tendones/metabolismo , Tendones/patología
19.
J Autoimmun ; 37(3): 242-53, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21795021

RESUMEN

Autoimmune hepatitis (AIH) is a serious chronic inflammatory disease of the liver with yet unknown etiology and largely uncertain immunopathology. The hallmark of type 2 AIH is the generation of liver kidney microsomal-1 (LKM-1) autoantibodies, which predominantly react to cytochrome P450 2D6 (CYP2D6). The identification of disease initiating factors has been hampered in the past, since antibody epitope mapping was mostly performed using serum samples collected late during disease resulting in the identification of immunodominant epitopes not necessarily representing those involved in disease initiation. In order to identify possible environmental triggers for AIH, we analyzed for the first time the spreading of the anti-CYP2D6 antibody response over a prolonged period of time in AIH patients and in the CYP2D6 mouse model, in which mice infected with Adenovirus-human CYP2D6 (Ad-h2D6) develop antibodies with a similar specificity than AIH patients. Epitope spreading was analyzed in six AIH-2-patients and in the CYP2D6 mouse model using SPOTs membranes containing peptides covering the entire CYP2D6 protein. Despite of a considerable variation, both mice and AIH patients largely focus their humoral immune response on an immunodominant epitope early after infection (mice) or diagnosis (patients). The CYP2D6 mouse model revealed that epitope spreading is initiated at the immunodominant epitope and later expands to neighboring and remote regions. Sequence homologies to human pathogens have been detected for all identified epitopes. Our study demonstrates that epitope spreading does indeed occur during the pathogenesis of AIH and supports the concept of molecular mimicry as a possible initiating mechanism for AIH.


Asunto(s)
Autoanticuerpos/biosíntesis , Citocromo P-450 CYP2D6/inmunología , Hepacivirus/inmunología , Hepatitis C Crónica/inmunología , Hepatitis Autoinmune/inmunología , Epítopos Inmunodominantes/inmunología , Adenoviridae/química , Adenoviridae/inmunología , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Autoanticuerpos/inmunología , Autoantígenos/genética , Autoantígenos/inmunología , Niño , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Mapeo Epitopo , Femenino , Vectores Genéticos/química , Vectores Genéticos/inmunología , Hepatitis C Crónica/genética , Hepatitis C Crónica/virología , Hepatitis Autoinmune/genética , Hepatitis Autoinmune/virología , Humanos , Epítopos Inmunodominantes/genética , Ratones , Ratones Transgénicos , Imitación Molecular , Datos de Secuencia Molecular
20.
Am J Sports Med ; 49(10): 2783-2794, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34264782

RESUMEN

BACKGROUND: Muscle strain injury leads to a high risk of recurrent injury in sports and can cause long-term symptoms such as weakness and pain. Scar tissue formation after strain injuries has been described, yet what ultrastructural changes might occur in the chronic phase of this injury have not. It is also unknown if persistent symptoms and morphological abnormalities of the tissue can be mitigated by strength training. PURPOSE: To investigate if heavy resistance training improves symptoms and structural abnormalities after strain injuries. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: A total of 30 participants with long-term weakness and/or pain after a strain injury of the thigh or calf muscles were randomized to eccentric heavy resistance training of the injured region or control exercises of the back and abdominal muscle. Isokinetic (hamstring) or isometric (calf) muscle strength was determined, muscle cross-sectional area measured, and pain and function evaluated. Scar tissue ultrastructure was determined from biopsy specimens taken from the injured area before and after the training intervention. RESULTS: Heavy resistance training over 3 months improved pain and function, normalized muscle strength deficits, and increased muscle cross-sectional area in the previously injured region. No systematic effect of training was found upon pathologic infiltration of fat and blood vessels into the previously injured area. Control exercises had no effect on strength, cross-sectional area, or scar tissue but a positive effect on patient-related outcome measures, such as pain and functional scores. CONCLUSION: Short-term strength training can improve sequelae symptoms and optimize muscle function even many years after a strain injury, but it does not seem to influence the overall structural abnormalities of the area with scar tissue. REGISTRATION: NCT02152098 (ClinicalTrials.gov identifier).


Asunto(s)
Músculos Isquiosurales , Entrenamiento de Fuerza , Humanos , Fuerza Muscular , Músculo Esquelético , Muslo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA